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Lecture 11: Protostellar disks and outflows 
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VORLESUNG/LECTURE 

Raum: Physik - 02.201a  

dienstags, 12:00 - 14:00 Uhr 

 

SPRECHSTUNDE: 

Raum: GSC, 1/34, Tel.:  47433, (roellig@ph1.uni-koeln.de) 

dienstags: 14:00-16:00 Uhr 

 

Nr. Thema Termin 

1 Observing the cold ISM 21.04.2020 

2 Observing Young Stars 28.04.2020 

3 Gas Flows and Turbulence 
Magnetic Fields and Magnetized Turbulence 

05.05.2020 

4 Gravitational Instability and Collapse 12.05.2020 

5 Stellar Feedback 19.05.2020 

6 Giant Molecular Clouds 26.05.2020 

7 Star Formation Rate at Galactic Scales 02.06.2020 

8 Stellar Clustering 09.06.2020 

9 Initial Mass Function – Observations and Theory 16.06.2020 

10 Massive Star Formation 23.06.2020 

11 Protostellar disks and outflows – observations and 
theory 

30.06.2020 

12 Protostar Formation  and Evolution 07.07.2020 

13 Late Stage stars and disks – planet formation 14.07.2020 

 



11 PROTOSTELLAR DISKS AND OUTFLOWS 

11.1 OBSERVING DISKS 

11.1.1 Dust at optical wavelengths 
• Disks do not emit optical light 

• detect disks in scattered starlight 

• detect disks in absorption 

o requires bright, extended background 

e.g. HII regions around massive stars 

• advantage: excellent spatial resolution (scale in Fig 1 ~ 100 AU) 

• requires favorable geometry 

• observation only possible once the dusty envelope is gone (later 

stage of disk evolution) 

 

11.1.2 Dust emission in the Infrared and Sub-mm 
 

• Warm dust near the central star 

• If the star is also visible => dust cannot be in a spherical shell => disk 

• Few observations were disks are resolved 

Abbildung 1 Three disks (proplyd) in the Orion Nebula  seen in absorption against the nebula using the HST. 
http://hubblesite.org/newscenter/archive/releases/1995/45/image/ 
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Expected emission of a disk: 

thin disk of surface density Σ(𝜔) and temperature 𝑇(𝜔) beginning at 

radius 𝜔0 and extending up to radius 𝜔1  

dust opacity 𝜅𝜆, inclination angle 𝜃, received flux: 

𝐹𝜆 = ∫ 𝐼𝜆𝑑Ω 

𝐹𝜆 =
2𝜋 cos 𝜃

𝐷2
 ∫ 𝐼𝜆(𝜔)𝜔𝑑𝜔 

𝐹𝜆 =
2𝜋 cos 𝜃

𝐷2
 ∫ 𝐵𝜆(𝑇) [1 − exp (−

𝜅𝜆𝛴

𝑐𝑜𝑠 𝜃
)] 𝜔𝑑𝜔

𝜔1

𝜔0

  

Fitting an observation 𝐹𝜆 to the disk model requires Σ(𝜔) and 𝑇(𝜔) (and 

𝜅𝜆) 

Abbildung 2 An ALMA image of the disk around the young star HL Tau. The image shows dust continuum emission. 
Image from https://public.nrao.edu/static/pr/planet-formation-alma.html  

projected ring area 

2𝜋𝜔 cos 𝜃 𝑑𝜔 

distance 𝐷 

𝜏𝜆 =
𝜅𝜆Σ

cos 𝜃
 

𝐼𝜆 = 𝐵𝜆(𝑇)[1 − 𝑒𝜆
−𝜏] 

https://public.nrao.edu/static/pr/planet-formation-alma.html
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• complicated models of disk 

o temperature (heating, cooling) 

o density 

o chemical structure 

OPTICAL THICK LIMIT 

𝜏𝜆 =
𝜅𝜆Σ

cos 𝜃
≫ 1 ⇒ exp(−𝜏𝜆) → 0 

Σ dependence removed in thick limit! 

𝐹𝜆 =
4𝜋 cos 𝜃

𝐷2
 
ℎ𝑐2

𝜆5
∫

𝜔

exp[ℎ𝑐/(𝑘𝐵𝑇)] − 1
𝑑𝜔

𝜔1

𝜔0

 

Abbildung 3 Woitke et al. 2016 

Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig


Markus Röllig




assume 𝑇 = 𝑇0(𝜔/𝜔0)−𝑞 and substitute 𝑥 = (
ℎ𝑐

𝜆𝑘𝐵𝑇0
)

1/𝑞 𝜔

𝜔0
 

 

𝐹𝜆 =
4𝜋 cos 𝜃

𝐷2
 
ℎ𝑐2

𝜆5
(

𝜔0

𝑥0
)

2

∫
𝑥

exp[𝑥𝑞] − 1
𝑑𝑥

𝑥1

𝑥0

 

𝐹𝜆 =
4𝜋 cos 𝜃

𝐷2
 
ℎ𝑐2

𝜆5
(

ℎ𝑐

𝜆𝑘𝐵𝜔0
𝑞

𝑇0

)

−2/𝑞

∫
𝑥

exp[𝑥𝑞] − 1
𝑑𝑥

𝑥1

𝑥0

 

 

Integrating from 𝑥0 = 0 to 𝑥1 = ∞  𝜆𝐹𝜆 ∝ 𝜆(2−4𝑞)/𝑞 

At small wavelength this can be inverted and the temperature law can be 

deduced. 

OPTICAL THIN LIMIT 

@long wavelengths (FIR, sub-mm), outer disk with lower Σ 

 

1 − exp (−
𝜅𝜆𝛴

𝑐𝑜𝑠 𝜃
) ≈

𝜅𝜆𝛴

𝑐𝑜𝑠 𝜃
 

 

𝐹𝜆 =
2𝜋

𝐷2
 ∫ 𝐵𝜆(𝑇)𝜅𝜆𝛴𝜔𝑑𝜔

𝜔1

𝜔0

 

inclination becomes irrelevant. Assuming RJ limit 

𝐵𝜆(𝑇) ≈
2𝑐𝑘𝐵𝑇

𝜆4
 

𝐹𝜆 =
4𝜋𝑐𝑘𝐵𝜅_𝜆

𝐷2𝜆4
 ∫ 𝑇𝛴𝜔𝑑𝜔

𝜔1

𝜔0

 

 

𝜆𝐹𝜆 ∝ 𝜆−3−𝛽 

 

The sub-mm SED tells us about the wavelength dependence of the dust 

opacity! 

𝜆-dependence outside of 

integral 

assuming: 

𝜅𝜆 ∝ 𝜆−𝛽 
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ISM: 𝛽 ≈ 2 in the diffuse ISM, 𝛽 ≈ 1 in the dense ISM 

reduction in 𝛽 indicates grain growth  

but also transition from optically thick to thin causes the SED to flatten! 

 

11.1.3 Disks in molecular lines 
 

Line emission also reveals kinematics! 

e.g. truncation radius of disk from max. rotation velocity  

 

Abbildung 4 Najita et al. 2007 
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Kepplerian orbits are fastest in the inner disk 

11.2 OBSERVATIONS OF OUTFLOWS 

11.2.1 Outflows in the optical 
 

First detected in the optical in the 1950s (Herbig & Haro) 

Small patches of optical emission (continuum & lines) 

Interpretation: fast shock (-> ionization, therefore H𝛼 emission) and 

up/downstream we find neutral, warm material (emission lines) 

1970: knots are aligned in linear structures (bi-polar) with bow shocks at 

the head of the jets 

Abbildung 5 Tobin et al. 2012 
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knots: locations where the jet encountered a dense ISM region 

(producing strong shocks) or where variations of the velocity or mass flux 

feeding the jet caused internal shocks (then knots are symmetrically w.r.t. 

to the both bipolar jets).  

HH jets move typically with few 100s km s-1. Visible spatial variation on 

timescales of 10 years.  

 

 

 

Abbildung 6 Herbig-Haro jets imaged with the Hubble Space Telescope.Two jets are visible; one is at the tip of the “pillar" near the 
top of the image, and another is near the edge of the structure in the middle-left part of the image. Bow shocks from the jets are 
clearly visible. Taken from http://hubblesite.org/newscenter/archive/releases/2010/13/image/a/. 

http://hubblesite.org/newscenter/archive/releases/2010/13/image/a/
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Estimated momentum flux: 10−6 − 10−3 M⊙km s−1yr−1 (very 

uncertain) 

 

 

 

 

Abbildung 7 The glowing, clumpy streams of material shown in these NASA/ESA Hubble Space Telescope images are the signposts of 
star birth. Ejected episodically by young stars like cannon salvos, the blobby material zips along at more than 700 000 kilometres per 
hour. The speedy jets are confined to narrow beams by the powerful stellar magnetic field. Called Herbig-Haro or HH objects, these 
outflows have a bumpy ride through space. When fast-moving blobs collide with slower-moving gas, bow shocks arise as the 
material heats up. Bow shocks are glowing waves of material similar to waves produced by the bow of a ship ploughing through 
water. In HH 2, at lower right, several bow shocks can be seen where several fast-moving clumps have bunched up like cars in a 
traffic jam. In HH 34, at lower left, a grouping of merged bow shocks reveals regions that brighten and fade over time as the heated 
material cools where the shocks intersect. In HH 47, at top, the blobs of material look like a string of cars on a crowded motorway, 
which ends in a chain-reaction accident. The smash up creates the bow shock, left. These images are part of a series of time-lapse 
movies astronomers have made showing the outflows’ motion over time. The movies were stitched together from images taken over 
a 14-year period by Hubble’s Wide Field Planetary Camera 2. Hubble followed the jets over three epochs: HH 2 from 1994, 1997, and 
2007; HH 34 from 1994, 1998, and 2007; and HH 47 from 1994, 1999, and 2008. The outflows are roughly 1350 light-years from 
Earth. HH 34 and HH 2 reside near the Orion Nebula, in the northern sky. HH 47 is located in the southern constellation of Vela. 
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11.2.2 Outflows in the radio 
 

optical & near-IR: traces strong shock heating 

molecular lines show that narrow optical jets are accompanied by a much 

wider-angle, slower-moving and more massive molecular outflow 

Abbildung 8 HH34, Credit: NASA, ESA, and P. Hartigan (Rice University) 

Abbildung 9 McKee & Ostriker 2007: The HH 111 jet and outflow system. The color scale shows a composite Hubble Space Telescope 
image of the inner portion of the jet (WFPC2/visible) and the stellar source region (NICMOS/IR) (Reipurth et al. 1999). The green 
contours show the walls of the molecular outflow using the v = 6 km s−1 channel map from the CO J = 1–0 line, obtained with BIMA 
(Lee et al. 2000). The yellow star marks the driving source position, and the grey oval marks the radio image beam size; the total 
length of the outflow lobe shown is ≈0.2 pc.  
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Molecular lines show: large masses of mol. gas moving at ~ 10 km s-1. 

These component carry bulk of outflow momentum: 

 10−4 − 10−1M⊙km s−1yr−1  

Interpretation: not directly ejected material but ambient gas swept up by 

the jets. 

 

11.3 THEORY 

11.3.1 Disk Formation 

11.3.1.1 The Angular Momentum of Protostellar Cores 

 

Measure the angular momentum by line observations: 

Ω: angular velocity of the rotation, 𝐼: moment of inertia of the core 

ratio of 𝐸𝑘𝑖𝑛 in rotation to 𝐸𝑔𝑟𝑎𝑣 -> dimensionless measure 𝛽 

𝛽 =
(1/2)𝐼Ω2

𝑎𝐺𝑀2/𝑅
 

𝛽 =
1

4𝜋𝐺𝜌
 Ω2 =

Ω2𝑅3

3𝐺𝑀
 

Typical observed values: few percent (Goodman et al. 1993) 

Cores are not primarily supported by rotation 

11.3.1.2 Rotating Collapse: The Hydrodynamic Case 

Fluid element at distance 𝒓𝟎 from axis of rotation (assume in equatorial 

plane) 

Initial angular momentum: 𝑗 = 𝑟0
2Ω (no pressure assumed)  

Energy and j remains constant. At closest approach to central star 𝑟𝑚𝑖𝑛 its 

velocity is max 

𝑣𝑚𝑎𝑥 = √2𝐺𝑀∗/𝑟𝑚𝑖𝑛 , 𝑗 = 𝑟𝑚𝑖𝑛𝑣𝑚𝑎𝑥 

for sphere of uniform 

density 𝜌 
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𝑟𝑚𝑖𝑛 =
𝑟0

4Ω2

𝐺𝑀∗
=

4𝜋𝜌𝛽𝑟0
4

𝑀∗
 

(radius at which infalling material must go into the disk because it cannot 

come any closer) 

𝑀∗ = (4/3)𝜋𝜌𝑟0
3 

𝑟𝑚𝑖𝑛 = 3𝛽𝑟0 

Cores of ~0.1 pc size should become rotationally flattened at radii of 

several hundred AU 

 

11.3.1.3 Rotating Collapse: The MHD Case 

 

Effect of magn. fields: core contracts, rotation wants to spin up, twists 

magn. field lines, tension force that opposes rotation and tries to keep 

the core rotating like a solid body. 

 

Cylindrical coordinates (𝜔, 𝜙, 𝑧), fluid element with velocity 𝑣𝜙 in 𝜙 

direction 

Magnetic field through fluid element: 𝑩 = (𝐵𝜔, 𝐵𝜙, 𝐵𝑧) 

poloidal component: 𝑩𝑝 = (𝐵𝜔 , 𝐵𝑧), toroidal component 𝐵𝜙 

fluid and magn. field: axisymmetric 

Lorentz force on fluid element 

𝒇 =
1

4𝜋
 [(∇ × 𝑩) × 𝑩] 

=
1

4𝜋
[
𝐵𝜔

𝜔

𝜕(𝜔𝐵𝜙)

𝜕𝜔
+ 𝐵𝑧

𝜕𝐵𝜙

𝜕𝑧
] �̂� 

=
1

4𝜋
𝑩𝑝 ⋅ ∇𝑝(𝜔𝐵𝜙)�̂� 

rate of change of momentum associated with the Lorentz force:  

𝜕

𝜕𝑡
(𝜌𝐯) = 𝒇 

poloidal gradient 

∇𝑝= (𝜕/𝜕𝜔, 𝜕/𝜕𝑧) 
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𝜙 component and multiplication with 𝜔 -> angular momentum 

𝜕

𝜕𝑡
(𝜌v𝜙𝜔) =

1

4𝜋
𝑩𝑝 ⋅ ∇𝑝(𝜔𝐵𝜙) 

left: time rate of change of angular momentum per unit volume 𝜌𝑣𝜙𝜔 

right: torque per unit volume exerted by the magnetic field 

 

magnetic braking time: 

𝑡𝑏𝑟 ≈
(𝜌v𝜙𝜔)

𝜕
𝜕𝑡

(𝜌v𝜙𝜔)
=

4𝜋𝜌v𝜙𝜔

𝑩𝑝 ⋅ ∇𝑝(𝜔𝐵𝜙)
 

Consider a collapsing fluid element that is trying to rotate with Keplerian 

velocity: 

𝑣𝜙 = √
𝐺𝑀

𝜔
≈ √(4𝜋/3)𝐺𝜌𝜔2 

 

𝑡𝑏𝑟 ≈
(4𝜋𝜌)3/2 𝐺1/2𝜔2

𝑩𝑝 ⋅ ∇𝑝(𝜔𝐵𝜙)
 

Assume: poloidal and toroidal components are comparable, characteristic 

length scale on which field varies is , i.e. fairly smooth 

Then 

𝑩𝑝 ⋅ ∇𝑝(𝜔𝐵𝜙)~𝐵2 

 

𝑡𝑏𝑟~
𝐺1/2𝜌3/2𝜔2

𝐵2
~

(𝐺𝜌)1/2𝜔2

𝑣𝐴
2 ~

𝑡𝑐𝑟
2

𝑡𝑓𝑓
 

 

If the cloud starts with energetic equipartition: 𝑡𝑐𝑟~𝑡𝑓𝑓 

so 𝑡𝑏𝑟~𝑡𝑐𝑟  

dropping all constants of 

order unity 

Alfven speed 

𝑣𝐴 = 𝐵/√4𝜋𝜌 

𝑡𝑐𝑟 = 𝜔/𝑣𝐴 
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Even a marginally wound up magn. field is capable of stopping Keplerian 

rotation in a time scale comparable to the collapse or crossing time. 

If the magn. field is strong enough this prevents disk formation at all! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11.3.1.4 The Magnetic Braking Problem 

 

Problem: It naively seems like magnetic fields should prevent disks from 

forming at all, but we observe that they do.  

We even observe disks present in class 0 sources, where the majority of 

the gas is still in the envelope. 

• Could Ion-Neutral drift offer a way out? 

o I-N-drift allows gas to decouple from magn. field on scales 

below 𝐿𝐴𝐷~0.05 𝑝𝑐. Disk formation below this scale? 

o Simulations suggest that this does not work. 

▪ I-N drift -> gas flux released from the gas. 
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▪ I-N-drift builds up flux tubes near the star 

▪ this flux tubes prevent disk formation 

• Misalignment between rotation axis and magnetic field 

o i.e. turbulence in the collapsing gas 

o turbulence bends and misaligns magnetic field lines 

o efficiency of magnetic breaking is greatly reduced 

• Problem still not fully solved 

 

Abbildung 10 Results from a simulation of magnetized rotating collapse including the effects of ion-neutral drift and Ohmic 
dissipation (Krasnopolsky et al., 2012). Lengths on the axes are in units of cm. Colors and contours show the density in the equatorial 
plane, on a logarithmic scale from 10-16.5 to 10-12.5 g cm-3. Arrows show velocity vectors. 
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11.3.2 Disk Evolution 
Given that disks exist, we wish to understand how they evolve, and how 

they accrete onto their parent stars. 

11.3.2.1 Steady Thin Disk 

 

Consider: Thin disk (𝑧 = 0, only), Σ surface density, Ω angular velocity, 

cylindrical symmetric (only function of radius 𝑟) 

orbital velocity 𝑣𝜙 = 𝑟Ω, radial velocity 𝑣𝑟  (< 𝑣𝜙, so gas can accrete) 

equation of mass conservation: 

𝜕

𝜕𝑟
𝜌 + ∇ ⋅ (𝜌𝒗) =

𝜕

𝜕𝑡
𝜌 +

1

𝑟
 

𝜕

𝜕𝑟
(𝑟𝜌𝑣𝑟) = 0 

𝜕

𝜕𝑡
Σ +

1

𝑟
 

𝜕

𝜕𝑟
(𝑟Σ𝑣𝑟) = 0 

𝜕

𝜕𝑡
Σ +

1

2𝜋𝑟
 

𝜕

𝜕𝑟
�̇� = 0  

 

Navier-Stokes equation 

𝜌 (
𝜕

𝜕𝑡
𝐯 + 𝐯 ⋅ ∇𝐯) = −∇p − ρ∇ψ + ∇ ⋅ 𝐓  

 

Σ [
𝜕

𝜕𝑡
𝑣𝜙 +

𝑣𝑟

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝜙)] = ∫

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝑇𝑟𝜙 )𝑑𝑧  

 

2πrΣ [
𝜕

𝜕𝑡
𝑗 + 𝑣𝑟

𝜕

𝜕𝑟
𝑗] = ∫

𝜕

𝜕𝑟
(2𝜋𝑟2𝑇𝑟𝜙 )𝑑𝑧 =

𝜕

𝜕𝑟
𝒯 

 

𝒯 = 2𝜋𝑟 ∫ 𝑟𝑇𝑟𝜙𝑑𝑧 

2𝜋𝑟Σ: mass per unit radius in a thin ring, 2𝜋𝑟Σj: angular momentum in a 

thin ring, 𝒯: torque exerted on the ring due to viscosity. 

𝜌 = Σ𝛿(𝑧) 

drop components of 

divergence in 𝑧 and 𝜙 

directions 

integrate over 𝑧  

�̇� = −2𝜋𝑟Σ𝑣𝑟 

 

p: pressure 

𝜓: grav. potential 

𝑻: viscous stress tensor 

integrate over 𝑧 

𝜙 derivatives vanish 

because of symmetry 

 

multiply by 2𝜋𝑟2 

 

 

𝑗 = 𝑟𝑣𝜙: angular 

momentum per unit 

mass 
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Suppose we look for solutions of this equation in which the angular 

momentum per unit mass at a given location stays constant: 𝜕𝑗/𝜕𝑡 = 0 

This will be the case, for example, of a disk where the azimuthal motion is 

purely Keplerian at all times. In this case the evolution equation just 

becomes 

−�̇�
𝜕𝑗

𝜕𝑟
=

𝜕𝒯

𝜕𝑟
 

the accretion rate �̇� is controlled by the rate at which viscous torques 

remove angular momentum from material closer to the star and give it to 

material further out. 

In case of Keplerian rotation: 𝑗 = √𝐺𝑀𝑟       

relationship: accretion rate-viscous torque 

• We will assume that the gas in the disk is Newtonian, meaning that 

the viscous stress is proportional to the rate of strain in the fluid.  

• We want to know 𝑇𝑟𝜙, meaning the force per unit area in the 𝜙 

direction, exerted on the radial face of a fluid element.  

• Consider an observer in a frame comoving with the orbiting fluid at 

some particular distance r from the star   

• Consider a fluid element that is initially on the same radial ray as the 

observer, but a distance dr further from the star. 

• If the rotation is solid body, then the fluid element and the observer 

will always lie on the same radial ray, so there is no strain, and there 

will be no viscous stress. 

• If there is differential rotation, such that the fluid further the star 

has a longer orbital period (as we expect for Keplerian motion), the 

fluid element will gradually fall behind the observer. This represents 

a strain in the fluid. 

How quickly does the element fall behind? 

difference in angular momentum:  𝑑Ω = (𝑑Ω/𝑑𝑟)𝑑r  

difference in spatial velocity:    𝑟(𝑑Ω/𝑑𝑟)𝑑r  

rate of strain     𝑟(𝑑Ω/𝑑𝑟)𝑑𝑟/𝑑𝑟 = 𝑟(𝑑Ω/𝑑𝑟)  
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Viscous stress: rate of strain times the dynamic viscosity: 

𝑇𝑟𝜙 = 𝜇𝑟
𝑑Ω

d𝑟
= 𝜌𝜈𝑟

𝑑Ω

d𝑟
 

 

𝒯 = 2𝜋𝑟 ∫ 𝑟𝑇𝑟𝜙𝑑𝑧 = 2𝜋𝑟3Σ𝜈𝑟
𝑑Ω

d𝑟
 

 

Assume Keplerian rotation: 𝑗 = √𝐺𝑀𝑟, Ω = √𝐺𝑀/𝑟3 

 

𝜕

𝜕𝑡
Σ −

1

2𝜋𝑟

𝜕

𝜕𝑟
�̇� = 0 

−�̇�
𝜕𝑗

𝜕𝑟
=

𝜕𝒯

𝜕𝑟
 

gives: 

𝜕Σ

𝜕𝑡
=

3

𝑟

𝜕

𝜕𝑟
 [𝑟

1
2

𝜕

𝜕𝑟
(𝜈Σ𝑟

1
2)] 

𝑣𝑟 = −
3

Σ𝑟
1
2 

𝜕

𝜕𝑟
(𝜈Σ𝑟

1
2)  

𝜕

𝜕𝑡
∝

𝜕2

𝜕𝑟2 diffusion eq. , if we start with a sharply peaked Σ, say a surface 

density that looks like a ring, viscosity will spread it out. 

Analytic solution for the viscous 

ring of material with constant 

kinematic viscosity 𝜈. At time 

𝑡 =  0, the column density 

distribution is Σ = Σ0𝛿(𝑟 − 𝑅0) 

Colored lines show the surface 

density distribution at later 

dimensionless times, as 

indicated in the legend. (Pringle 

(1981)). 

kinematic viscosity 

𝜈 = 𝜇/𝜌 
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How quickly to do rings spread, and does mass move inward? 

Assume: Σ and 𝜈 are ~constant 

𝑑𝒯

𝑑𝑟
= −3𝜋Σ𝜈

𝑑𝑗

𝑑𝑟
 

�̇� = 3𝜋Σ𝜈 

𝑣𝑟 = −
3

2

𝜈

𝑟
 

The time required for a given fluid element to reach the star, therefore, 

is:  

𝑡𝑎𝑐𝑐~
𝑟

𝑣𝑟
~𝑟2/𝜈  

 

𝛼-Ansatz: 𝑇𝑟𝜙 = −𝛼𝑝
𝑟

Ω
𝑑Ω

dr

. It follows that 

𝜈 =
𝛼𝑐𝑠

2

Ω
= 𝛼𝑐𝑠𝐻 

𝑐𝑠: sound speed, 𝐻: disk scale height (both include thermal and magnetic 

pressure). 

𝑡𝑎𝑐𝑐 =
1

𝛼
(

𝑡𝑐𝑟𝑜𝑠𝑠

𝑡𝑜𝑟𝑏
)

2

𝑡𝑜𝑟𝑏 

Therefore, it takes about 𝑡𝑎𝑐𝑐/𝑡𝑜𝑟𝑏 =
1

𝛼
(

𝑡𝑐𝑟𝑜𝑠𝑠

𝑡𝑜𝑟𝑏
)

2
 orbits to drain the disk! 

Hartmann et al. (1998) estimate that 𝛼~10−2 in nearby T Tauri stars. 

11.3.2.2 Physical Origins of Disk Viscosity 

 

• viscous mechanism to transport angular momentum and mass 

• estimated strength from observations 

• what mechanism? 

 

ORDINARY FLUID VISCOSITY 
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Kinematic viscosity: 𝜈 = 2�̅�𝜆 �̅�: RMS particle speed, 𝜆: mean free path 

protostellar accretion disk: 

𝑛 = 1012𝑐𝑚−3, 𝑇 = 100𝐾, �̅� = 0.6 𝑘𝑚 𝑠−1, 

 𝜎 = (1𝑛𝑚)2, 𝜆 =
1

𝑛𝜎
= 100𝑐𝑚, 𝜈~108𝑐𝑚−2𝑠  

Let us consider material at a temperature of 100 K that is orbiting 100 AU 

from a 1  𝑀⊙ star. 

𝑐𝑠 = 0.6 𝑘𝑚 𝑠−1, Ω = 6.3 × 10−3𝑦𝑟−1 =>  𝛼 ≈ 6 × 10−12 (!) 

Suppose the gas starts out ~100 AU from the star. The time required for 

the gas to accrete is then 

𝑡𝑎𝑐𝑐~
𝑟2

𝜈
~

(100𝐴𝑈)2

𝑣
~1022𝑠~1015𝑦𝑟 

Longer than universe! 

If that were the only source of angular momentum transport in a disk, 

then stars would never form. Something else must be at work. 

TURBULENT HYDRODYNAMICAL VISCOSITY 

If there are large-scale radial motions within a disk, then the effective 

value of �̅�𝜆 could be significantly larger than the microphysical one we 

calculated. In effect, these motions will mix material from different radii 

within the disk, exchanging angular momentum between inner and outer 

parts of the disk. 

Numerical simulations have been attempted, and seem to find that 

hydrodynamic mechanisms do not produce significant angular 

momentum transport, but they may be compromised by limited 

resolution. 

Laboratory experiments can reach Reynolds numbers of ~106, and seem 

to find negligible transport𝛼 < 10−6 (Ji et al., 2006). Given these results, 

most researchers are convinced that purely hydrodynamic mechanisms 

cannot explain the observed lifetimes and rates of angular momentum 

transport in disks. Instead, some other mechanism is required. 

MAGNETO-ROTATIONAL INSTABILITY 
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• The basic idea is that magnetic field lines threading the disk connect 

annuli at different radii.  

• As the disk rotates and the annuli shear, this stretches the magnetic 

field line connecting them.  

• This causes an opposing magnetic tension, which attempts to force 

the two points to stay close together, and thus to force them into 

co-rotation.  

• This speeds up the outermost fluid element, which is falling behind, 

and slows down the innermost one, and thus it moves angular 

momentum outward.  

• However, when you remove angular momentum from a fluid 

element it tends to fall toward the center, so the innermost fluid 

element falls even closer to the star.  

• Similarly, the outermost fluid element gains angular momentum, 

and so it wants to move outward.  

• This increases the tension even more, and the system goes unstable 

due to this positive feedback loop. 

Simulators are still working to try to come up with a general result about 

the value of 𝑎 produced by the MRI, but in at least some cases a as high 

as 0.1 seems to be possible. 

Problem: 

• MRI will only operate as long as matter is sufficiently coupled to the 

magnetic field 

GRAVITATIONAL TRANSPORT MECHANISMS 

Gravitational Instability: Toomre parameter 𝑄: 

�̇� =
3𝛼

𝑄

𝑐𝑠
3

𝐺
 

If 𝑄 > 1 (grav. stable), and 𝛼 < 1 maximum rate at which the disk can 

move matter ~𝑐𝑠
3/𝐺. 

This is also the characteristic rate at which matter falls onto the disk from 

a thermally-supported core, provided that we use the sound speed in the 

core rather than in the disk. 
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 in any regions where the disk is not significantly warmer than the 

core that is feeding it (e.g. the outer parts of the disk where stellar 

and viscous heating are small), the disk cannot transport matter 

inward as quickly as it is fed. 

 the surface density will rise and Q will decrease, giving rise to 

gravitational instability. 

 This can in turn generate transport of angular momentum via 

gravitational torques.  

 The disk can also transfer angular momentum to the star by forcing 

the star to move away from the center of mass. In this configuration 

the disk develops a one-armed spiral, and the star in effect goes into 

a binary orbit with the over-density in the disk. 

 This phenomenon is known as the Sling instability Shu et al. (1990). 

11.3.3 Outflow Launching 
How and why disks launch the ubiquitous jets and winds that 

observations reveal. 

Driving mechanism? 

Stellar winds? 

• High pressure in solar corona drives gas outward: mechanical 

luminosity: ~10−4𝐿⊙ 

• Observed outflows from young stars: ~0.1 𝐿⊙ 

• No! 

Photon pressure? 

• stellar photon field does not have enough momentum to drive the 

observed outflows of young stars 

Neither the thermal winds of low mass main sequence stars, nor the 

radiatively-driven winds of massive ones, show highly collimated features 

like the HH jets. 

Most natural mechanism: gravitational potential energy being liberated 

by the accretion flow, which, combined with magnetic fields, can produce 

highly collimated outflows. 
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