The measurement of p-nuclei alpha decay

Heinrich Wilsenach,¹ Yordan Georgiev,² Réne Heller,³ Ulli Koester,⁴ Volker Neu,⁵ Philipp Scholz,⁶ Tommy Schönherr,² and Kai Zuber¹

 $^{1}IKTP$ TU-Dresden, Dresden, Germany

² Transport Phenomena in Nanostructures, Dresden-Rossendorf, Germany

³Institute of Ion Beam Physics and Materials Research, Dresden-Rossendorf, Germany

⁴Institut Laue-Langevin, Grenoble, Isere, France
⁵Institute for Metallic Materials, Dresden, Germany
⁶Institute for Nuclear Physics, University of Cologne, Köln, North Rhine-Westphalia, Germany

For heavy proton rich nuclei created in the p-process often only the alpha decay channel is energetically allowed. These nuclei are long living with half-lives up to billions of years. Due to the wide range of half-lives these p-nuclei play a vital role in Geo- and Cosmo-chronometry. One of the crucial requirements of this technique is a high precision of the half-lives. Measuring this quantity is challenging as the material usually has a very low natural abundance. This means that the isotopes of interest will have to be made accurately in a quantity to enable a sufficiently detectable signal.

Alpha decay also plays a role in activation experiments where the product decays through the emission of an alpha particle. One such experiment is the investigation on the 144 Sm $(\alpha,\gamma)^{148}$ Gd cross-section, which can be measured due to the alpha decay of 148 Gd. This cross-section is important for p-process nucleosynthesis.

To overcome this challenge an ultra-low background alpha chamber was designed and constructed at IKTP TU-Dresden. The gas filled ionisation chamber was chosen for this task as it has a remarkably high efficiency $(98.6 \pm 2.2)\%$. The chamber was specially designed and built to measure low signal rates and has a background in the region of interest (1 MeV to 4 MeV) of around 0.27 counts per day per MeV.

The presentation will discuss samples made at the ISOLDE facility at CERN, as well as the alpha counting method used to determine the 144 Sm $(\alpha, \gamma)^{148}$ Gd crosssection.