80 Se(n, γ) cross-section measurement at n_TOF (CERN) V. Babiano-Suarez,¹ C. Domingo-Pardo,¹ L. Caballero,¹ I. Ladarescu,¹ J.L. Tain,¹ F. Calviño,² A. Casanovas,² A. Segarra,² A. Tarifeño Saldivia,² C. Guerrero,³ , J. Lerendegui-Marco,³ M.A. Millan-Callado,³ J.M. Quesada,³ M.T. Rodríguez-González,³ S. Heinitz,⁴ E.A. Mauregui,⁴ R. Dressler,⁴ N. Kivel,⁴ D. Schumann,⁴ U. Köster⁵,⁵ and The CERN n-TOF Collaboration ¹IFIC (CSIC-University of Valencia), Spain ²UPC-Barcelona, Spain ³University of Seville, Spain ⁴Paul Scherrer Institut (PSI), Villigen, Switzerland ⁵Institut Laue-Langevin (ILL), Grenoble, France We have measured the 80 Se(n, γ) cross section with high accuracy and high resolution at CERN n_TOF over the full energy range of astrophysical interest. These data are needed for a consistent interpretation of the temperature-sensitive s-process branching at 79 Se. The latter represents a key branching point in the nucleosynthesis of heavy elements during core He-burning and shell C-burning in massive stars. In particular, the 80 Se cross section affects the stellar yield of the "cold" s-only branching product in this region, namely 82 Kr. There exists only one previous TOF measurement on 80 Se, which however suffers of low resolution and insufficient completeness. New preliminary cross-section results will be presented together with a discussion of their possible astrophysical impact.