Mass measurements of rare isotopes for improved rp-process modeling at the LEBIT facility

A. Hamaker,^{1,2} G. Bollen,^{1,3} D. Puentes,^{1,2} M. Redshaw,^{2,4}

R. Ringle,² R. Sandler,⁴ S. Schwarz,² and I. T. Yandow^{1,2}

 $^{-1}Michigan$ State University, East Lansing, Michigan 48824, USA

²National Superconducting Cyclotron Laboratory, East Lansing, Michigan 48824, USA
³Facility for Rare Isotope Beams, East Lansing, Michigan 48824, USA
⁴Central Michigan University, Mount Pleasant, Michigan 48859, USA

Type I X-ray bursts are frequently observed thermonuclear explosions on the surface of neutron stars that accrete matter from a nearby companion star. The bursts are powered by nuclear reaction sequences that transform accreted hydrogen and helium into heavier elements via the 3α -reaction, the α p-process, and the rapid proton capture process (rp-process). Nuclear data on neutron deficient rare isotopes are needed to predict burst light curves that can then be compared with observations to constrain system parameters and neutron star properties. A recent sensitivity study on type-I x-ray bursts [1] has shown that the light curves and calculated final ash abundances are significantly affected by the current mass uncertainties in many proton rich nuclei. To this end, a recent experimental campaign at the Low Energy Beam and Ion Trap (LEBIT) facility at the National Superconducting Cyclotron Laboratory (NSCL) [2] has set out to measure the masses of several of these nuclei. In this talk, I will discuss recent mass measurements of importance for rp-process modeling including ⁵⁶Cu [3], ⁵¹Fe [4], and ⁶¹Zn [in progress] as well as several more planned measurements of ²⁷P, ²⁴Si, and ⁸⁰⁻⁸²Zr.

- [1] H. Schatz and W.-J. Ong, The Astrophy. J. 844, 29 (2017).
- [2] R. Ringle *et al.*, Int. J. Mass Spectrom. **349**, 87 (2013).
- [3] A. A. Valverde *et al.*, Phys. Rev. Lett. **120**, 032701 (2018).
- [4] W.-J. Ong *et al.*, Phys. Rev. C **98**, 065803 (2018).