Measurement of ²⁰Ne(d,p)²¹Ne for studies of s-process and neutron poisoning

Joseph Frost-Schenk,¹ A. Laird,¹ R. Longland,^{2,3} C. Barton,¹

C. Diget,¹ C. Marshall,^{2,3} F. Portillo,^{2,3} and K. Setoodehnia^{2,3}

¹University of York, York, UK

² Triangle Universities Nuclear Laboratory, NC, USA

³North Carolina State University, NC, USA

The s-process in massive stars is an important source of heavy elements at low metallicities. Massive stars with very low metallicity depend largely on rotation induced mixing to produce light nuclei, such as ²²Ne, which is the main source of neutrons for the s-process. Light nuclei are formed in the He burning phase and ¹⁶O is formed through ¹²C(α,γ). The ¹⁶O absorbs neutrons forming ¹⁷O and therefore competes with heavier s-process elements for available neutrons. The ratio of the subsequent ¹⁷O(α,γ) and ¹⁷O(α,n) dictates to what extent ¹⁶O behaves as a neutron poison, determining how many neutrons are available for the s-process.

States in the region of 7.65-8.00 MeV in ²¹Ne correspond to the Gamow window for the ¹⁷O(α ,n)²⁰Ne reaction in the temperature range 0.2-0.3 GK. The spin-parity and neutron width of some of the ²¹Ne states in the Gamow window are unknown. Some of these states also have significant uncertainty in their energies.

We have conducted a measurement of the 20 Ne $(d,p)^{21}$ Ne reaction populating states in the Gamow window using the Triangle Universities Nuclear Laboratory Split-pole Spectrograph. Using this 20 Ne $(d,p)^{21}$ Ne reaction we have identified those states with significant neutron widths, hence those most relevant for ${}^{17}O(\alpha,n)$. Details will be presented on the measurements that were made at 5 angles; preselected using DWBA calculations to maximise the selectivity of spin-parity assignments to 21 Ne states. Furthermore, we have determined the state energies in the astrophysically relevant excitation region and extracted their angular distributions. This work will ultimately lead to further information on 21 Ne states and as such a better understanding of the role 16 O has as a neutron poison for the s-process in massive stars.