Studies of β-delayed neutron emission in neutron-rich r-process nuclei with the BRIKEN detector array

C.J. Griffin, R. Caballero-Folch, I. Dillmann, and the BRIKEN Collaboration

1TRIUMF, Vancouver, British Columbia, Canada

β-delayed neutron emission probabilities of exotic nuclei, along with nuclear masses and β-decay half-lives, are of key importance in the stellar nucleosynthesis of heavy elements via the rapid neutron-capture process (r-process). Not only does β-delayed neutron emission lead to a redistribution of material as neutron-rich nuclei β-decay towards stability, it also acts as a source of late-time neutrons which increase the neutron-to-seed ratio and can be recaptured during the freeze-out phase. Both of these processes influence the final r-process abundance distribution and obtaining a more complete description of this process is vital to developing a deeper understanding of observed elemental abundances.

The β-delayed neutrons at RIKEN (BRIKEN) project [1, 2] combines the world’s most efficient neutron detector array with the highly-segmented silicon implantation detector AIDA and two HPGe clover detectors for γ spectroscopy. In operation since 2016, several experiments have already been conducted studying βn-emission in 231 nuclei from 64Cr to 151Cs and measuring many βn-emission probabilities and decay half-lives for the first time. With further experiments planned to study $A > 190$ and $A < 50$ nuclei in the coming years, the BRIKEN campaign will contribute a wealth of new results which are critical in reducing the uncertainty in r-process abundances obtained using astrophysical nucleosynthesis network calculations.

C.J. Griffin, R. Caballero-Folch, and I. Dillmann are funded by the Canadian NSERC and NRC.