¹⁹F spectroscopy and implications for astrophysics

M. La Cognata¹

¹Laboratori Nazionali del Sud - INFN, Catania, Italy

In astrophysics, ¹⁹F plays a major role because of the diverse reactions where it is involved and of its abundance. This may be used as a probe of stellar nucleosynthesis, since production and destruction rates are very sensitive to the stellar interior physical conditions, especially in the case of asymptotic giant branch (AGB) stars and the s-process. In these stars, ¹⁹F is produced by the ¹⁴N(α, γ)¹⁸F(β^+)¹⁸O(p, α)¹⁵N(α, γ)¹⁹F reaction chain, so the study of ¹⁵N+ α elastic scattering provides valuable clues about its synthesis, as the spectroscopic information can be used to constrain the resonance strengths and energies intervening in the calculation of the reaction rate.

¹⁹F spectroscopy through ¹⁵N + α elastic scattering is also important in the context of AGB stars, making it possible to constrain the cross section of the ¹⁸O(p, α)¹⁵N reaction and influencing the abundances of ¹⁸O, ¹⁹F and ¹⁵N. Finally, in explosive scenarios such as classical novae, the ¹⁵N + α elastic scattering is important as it allows us to shed light on the spectroscopy of ¹⁹F mirror nucleus ¹⁹Ne, entering explosive nucleosynthesis through ¹⁸F + p capture reactions.

In this work [1], we report on the most extensive measurement and analysis of the $^{15}N + \alpha$ elastic scattering, making it possible to span ^{19}F excitation energies over a wide interval, from ~ 5 to ~ 10 MeV, as well as a broad angular range, to pin down unknown spin parities of observed states. The measurement was carried out through the thick target inverse kinematics method, and the experimental spectra fitted using the R-matrix approach. This analysis allowed us to suggest new spin parity assignments and to identify ^{19}F states featuring α -cluster structures also in the energy regions of astrophysical interest.

[1] M. La Cognata et al., Physical Review C **99**, 034301 (2019).