The ⁵⁹Cu(p, α)⁵⁶Ni cross section and heavy element nucleosynthesis in core collapse supernovae

Ruchi Garg,¹ Claudia Lederer-Woods,¹ Tom Davinson,¹ Mirco Dietz,¹ Daid Kahl,¹ Massimo Barbagallo,² Sarah-Jane Lonsdale,¹ Alex Murphy,¹ and Phil Woods¹

¹School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK ²European Organization for Nuclear Research (CERN), Switzerland

In the research field of heavy element nucleosynthesis, the origin of p-nuclei has been a longstanding problem. They are thought to be produced in the hot environments such as supernovae via p-capture and γ -disintegration processes. But with these processes, most stellar models fail to reproduce the observed abundances of the lighter p-nuclei ^{92,94}Mo and ^{96,98}Ru [1]. In a study by Fröhlich et al., a new process called the ν p-process was suggested as an explanation for the abundances of p-nuclei with A>64 [2]. However, the competition between (p, α) and (p, γ) reactions on ⁵⁹Cu in an end-point cycle could hinder the reaction flow to the heavier elements by cycling the material back [3]. This competition is temperature sensitive and it is crucial to measure the ⁵⁹Cu(p, α)⁵⁶Ni reaction cross section in order to obtain reliable modelling results. Additionally, this reaction is of key importance to the light curve of X-ray bursts and the ashes' composition on the surface of the neutron star [4].

We have carried out the first direct measurement of the ${}^{59}\text{Cu}(\text{p},\alpha){}^{56}\text{Ni}$ reaction cross section. The experiment was performed at the recently upgraded HIE-ISOLDE facility at CERN in inverse kinematics bombarding a CH₂ target with a high intensity radioactive ${}^{59}\text{Cu}$ beam at beam energies between 3.6 - 5.0 MeV/u. I will present the experimental procedure, data analysis and first results.

- [1] M. Arnould and S. Goriely, Physics Reports 384, 1 (2003).
- [2] C. Fröhlich *et al.*, Physical Review Letters **96**, 142502 (2006).
- [3] A. Arcones et al., The Astrophysical Journal 750, 18 (2012).
- [4] R. Cyburt *et al.*, The Astrophysical Journal **830**, 55 (2016).