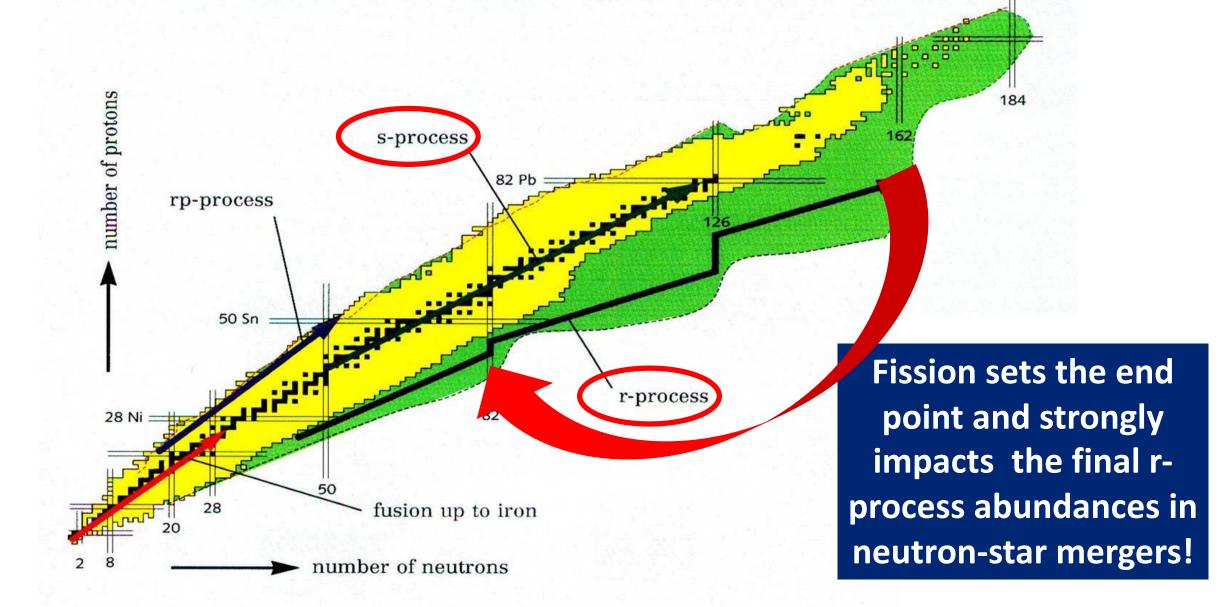


Indirect measurements of neutron-induced cross sections at storage rings

B. Jurado¹, D. Denis-Petit¹, A. Heniques¹, R. Reifarth², J. Glorius³, M. Grieser⁴,
C. G. Bruno⁵, Th. Davinson⁵, L. Gaudefroy⁶, Ch. Langer², Y. Litvinov³, L. Mathieu¹,
V. Meot⁶, I. Tsekhanovich¹, P. J. Woods⁴ and the NucAr collaboration

1) CENBG, Bordeaux, France

2) University of Frankfurt, Germany

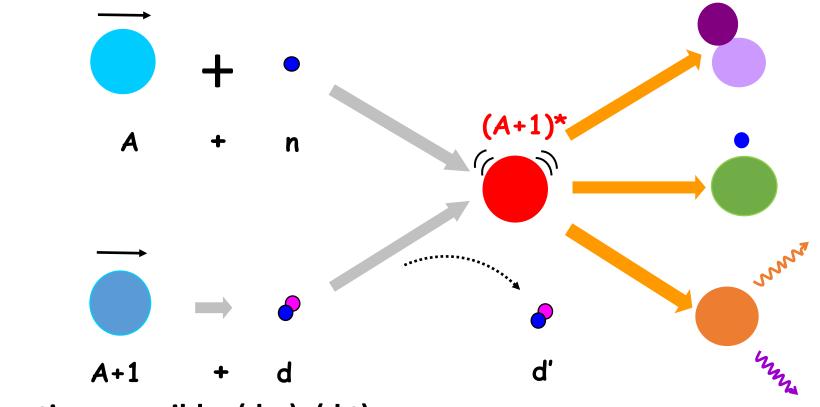

3) GSI, Darmstadt, Germany

4) MPIK, Heidelberg, Germany

5) University of Edinburgh, UK

6) CEA/DAM/DIF Bruyeres le Chatel, France

Need for neutron-induced cross sections on short-lived nuclei : sand r-process nucleosynthesis



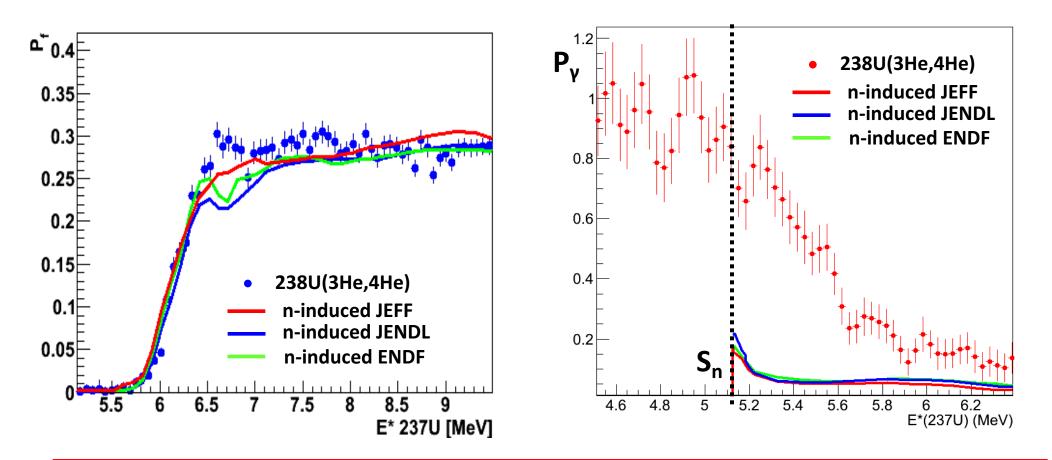
Applications in nuclear technology, reactor physics

		Bk 238 144 s		Bk 240 5 m	Bk 241 4.6 m	Bk 242	Bk 243 4.5 h	Bk 244 4.35 h	Bk 245 4.90 d	Bk 246 1.80 d	Bk 247 1380 a	Bk 248 23.7 h >9 a	Bk 249 320 d
		€ βsf		€ βst	έ γ 262; 152; 211	sf • 9	Sf α 6.575; 6.543 γ 755; 946 9	Sf ⁴ α 6.662; 6.620 γ 892; 218; 922 9	Sf ε α 5.888; 6.150 γ 253; 381 e ⁻ 9	ε γ 799; 1081; 834; 1124 e	α 5.531; 5.710; 5.688 γ 84; 265 9	β ⁻ 0.9 « α? γ551 β ⁻ ? «?	$\begin{array}{l} \beta^{+} \ 0.1; \ \alpha \ 5.419; \\ 5.391; \ sf \\ \gamma \ (327; \ 308) \\ \sigma \ 700; \ \sigma_f \ \sim 0.1 \end{array}$
		Cm 237 ?	Cm 238 2.4 h	Cm 239 3 h	Cm 240 27 d	Cm 241 32.8 d	Cm 242	Cm 243 29.1 a	Cm 244 18.10 a	Cm 245 8500 a	Cm 246 4730 a	Cm 247 1.56 · 10 ⁷ a	Cm 248 3.40 · 10° a
		α 6.656	ε α 6.558; 6.503 γ 55	ε γ 188 9	Sf α 6.291; 6.248 sf 9	Sf « α 5.939 γ 472; 431; 132 e ⁻ g	Sf α 6.113; 6.069 sf; g γ (44); e ⁻ σ~20 σ _f ~5	Sf α 5.785; 5.742 ε; sf; g γ 278; 228; 210; e ⁻ σ 130; σ ₁ 620	Sf α 5.805; 5.762 sf; g γ (43); e ⁻ σ 15; σ ₁ 1.1	st α 5.361; 5.304 sf; g γ 175; 133 σ 350; σ ₁ 2100	α 5.386; 5.343 sf; g γ (45); e ⁻ σ 1.2; σ _f 0.16	α 4.870; 5.267 γ 402; 278 9 σ 60; σ ₁ 82	α 5.078; 5.035 sf; γ; e ; g σ 2.6; σ ₁ 0.36
Am 234 2.32 m	Am 235 10.3 m	Am 236	Am 237 73.0 m	Am 238	Am 239	Am 240 50.8 h	Am 241 432.2 a	Am 242	Am 243 7370 a	Am 244	Am 245 2.05 h	Am 246	Am 247 22 m
€ βsf	ε α 6.457 γ 291; 224; 270; 739; 749	ε α 6.15 ? γ 583; 654;713880; 320	Sf α 6.042 γ 280; 438; 474; 909 9	Sf *	Sf «	Sf	Sf α 5.486; 5.443 sf; γ 60; 26 θ ⁻ ; g; σ 60 + 640 σ _f 3.15	Sf hγ (49), e ⁻ α 5.206 st;γ (49) σ; τ σ 1700 σγ 5900 σγ 2100	Sf α 5.275; 5.233 sf; γ 75; 44 σ 75 + 5 σ ₁ 0.079	Sf β ⁻ 1.5 ε γ (1084) β ⁻ 0.4 γ (1084) 898: θ ⁻ ; g 154; θ ⁻ σ ₁ 1600 σ ₁ 2200	Sf β ⁺ 0.9 γ 253; (241; 296) e ⁻ ; g	Sf β ⁻ 1.2; β ⁻ 2.2 γ 679; 205; γ 1079; 205; 154; 1062 756 1	β γ 285; 226 e
Pu 233 20.9 m	Pu 234 8.8 h	Pu 235 25.3 m	Pu 236 2.858 a	Pu 237 45.2 d	Pu 238 87.74 a	Pu 239 2.411 · 10 ⁴ a	Pu 240 6563 a	Pu 241 14.35 a	Pu 242 3.750 · 10 ⁵ a	Pu 243 4.956 h	Pu 244 8.00 · 10 ⁷ a	Pu 245 10.5 h	Pu 246 10.85 d
ε α 6.31 γ 235; 535	ε α 6.202; 6.151 γ; e	Sf	Sf α 5.768; 5.721 sf; Mg 28 γ (48; 109); e ⁻ σ _f 160	Sf α 5.334 γ 60; e ⁻ σ _f 2300	Sf α 5.499; 5.456 sf; Si; Mg γ (43; 100); e ⁻ σ 510; σ _f 17	Sf α 5.157; 5.144 sf; γ (52) e ⁻ ; m σ 270; σ ₁ 752	Sf α 5.168; 5.124 sf; γ (45) e ⁻ ; g σ 290; σ _f ~0.059	Sf β ⁻ 0.02; g α 4.896 γ (149); e ⁻ σ 370; σ ₁ 1010	st α 4.901; 4.856 sf; γ (45) e ⁻ ; g σ 19; σ ₁ <0.2	St β ⁺ 0.6 γ 84; g σ <100; σt 200	ST α 4.589; 4.546 sf; γ σ ⁻ σ 1.7	st β ⁼ 0.9; 1.2 γ 327; 560; 308; g σ 150	β 0.2; 0.3 γ 44; 224; 180 m ₁
Np 232 14.7 m	Np 233 36.2 m	Np 234 4.4 d	Np 235 396.1 d	Np 236 22.5 h 1.54-10 ⁵ a	Np 237 2.144 · 10 ⁶ a	Np 238 2.117 d	Np 239 2.355 d	Np 240 7.22 m 65 m	Np 241 13.9 m	Np 242 2.2 m 5.5 m	Np 243 1.85 m	Np 244 2.29 m	
ε γ 327; 820; 867; 864; 282 e	ε α 5.54 γ(312; 299; 547)	ε; β ⁺ γ 1559; 1528; 1602 σ _f ~900	ε; α 5.025; 5.007 γ (26; 84); e g; σ 160 + ?	$\begin{array}{c} \epsilon; \beta^{+} 0.5 \\ \gamma (642; \\ 688); e^{-} \\ \eta; \sigma_{1} 2700 \\ g; \sigma_{1} 3000 \end{array}$	Sf α 4.790; 4.774 γ 29; 87; e ⁻ σ 170; σ _f 0.020	β 1.2 γ 984; 1029; 1026; 924; e g; σ; 2600	β ⁻ 0.4; 0.7 γ 106; 278; 228; e ⁻ ; g σ 32 + 19; σ ₁ <1	β ⁺⁺ 2.2 β ⁺⁺ 0.9 γ 555; γ 566; 597 974; e ⁺⁺ 601; i _Y ; 9	β 1.3 γ 175; (133) g	β 2.7 β γ 736; γ 786; 780; 945; 1473 159 9 9	β γ 288 9	β γ 217; 681; 163; 111 9	152
U 231 4.2 d	U 232 68.9 a	U 233 1.592 · 10 ⁵ a	U 234 0.0054	U 235 0.7204	U 236	U 237 6.75 d	U 238 99.2742	U 239 23.5 m	U 240 14.1 h		U 242 16.8 m		
$\begin{array}{c} \varepsilon; \ \alpha \ 5.456; \\ 5.471; \ 5.404 \\ \gamma \ 26; \ 84; \ 102 \\ e^-; \ \sigma_1 250 \end{array}$	α 5.320; 5.262 Ne 24; γ (58; 129); e σ 73; σ ₁ 74	α 4.824; 4.783 Ne 25; γ (42; 97); e ⁻ σ 47; σ ₁ 530	$\begin{array}{c} 2.455 \cdot 10^5 \text{ a} \\ \scriptstyle \mathfrak{a} 4.775; 4.723 \dots; \mathfrak{sl} \\ \scriptstyle Mg 28; Ne; \gamma (53; 121 \dots) \\ \scriptstyle \mathfrak{e}^-; \sigma 96; \sigma_{1} 0.07 \end{array}$	26 m γ (0.07) e ⁻ 7.038-10 ⁸ a α 4.398; sf Ne; γ 186 σ 95; σι 536	μγ 1783; a 4.494; 4.445; 4.445; 642 sf; γ (49; 61 e ⁻ ; σ 5.1	β ⁻ 0.2 γ 60; 208 e ⁻ σ~100; σ ₁ <0.35	298 ns ¹ y 2514 1829 297; y (50, 4) or 27;	β 1.2; 1.3 γ 75; 44 σ 22; σ _f 15			β γ 68; 58; 585; 573 m		
Pa 230 17.4 d	Pa 231 3.276 · 10 ⁴ a	Pa 232 1.31 d	Pa 233 27.0 d	Pa 234	Pa 235 24.2 m	Pa 236 9.1 m	Pa 237 8.7 m	Pa 238 2.3 m	Pa 239 1.8 h				
ε; β 0.5 α 5.345; 5.326 γ 952; 919; 455; 899; 444; σ ₁ 1500	α 5.014; 4.952; 5.028; Ne 24; F 23? γ 27; 300; 303; e σ 200; σ; 0.020	β ⁻ 0.3. 1.3; ε	β ⁻ 0.3; 0.6 γ 312; 300; 341; e ⁻ σ 20 + 19; σ ₁ <0.1	$\begin{array}{c} \beta^{-}2.3 \\ \gamma \ (1001; \\ 1.2 \\ \gamma \ 131; 881; \\ \gamma \ 767) \\ \gamma \ (74); e^{-} \\ e_{\gamma} < 500 \end{array} \qquad \qquad$	β 1.4 γ 128 – 659 m	β ⁻ 2.0; 3.1 γ 642; 687; 1763; g βsf ?	β 1.4; 2.3 γ 854; 865; 529; 541	β 1.7; 2.9 γ 1015; 635; 448; 680 9	β ⁻ γ 522–681		150		
Th 229 7880 a	Th 230 7.54 · 10⁴ a	Th 231 25.5 h	Th 232 100	Th 233 22.3 m	Th 234 24.10 d	Th 235 7.1 m	Th 236 37.5 m	Th 237 5.0 m	Th 238 9.4 m				
α 4.845; 4.901; 4.815; γ 194; 211; 86; 31; e σ ~60; σ 30	α 4.687; 4.621 γ (68; 144); e Ne 24; σ 23.4 σt<0.0005	β 0.3; 0.4 γ 26; 84 e	1.405 · 10 ¹⁰ a α 4.013; 3.950; st γ (64); e ⁻ σ 7.37; σ 0.000000	γ 87; 29; 459; e ⁻	β ⁻ 0.2 γ 63; 92; 93 e ⁻ ; m σ 1.8; σt <0.01	β 1.4 γ 417; 727; 696	β 1.0 γ 111; (647; 196)	8-	β ⁻ γ 89				

Very difficult or even impossible to measure with standard techniques \rightarrow difficulty to produce and handle the needed targets!

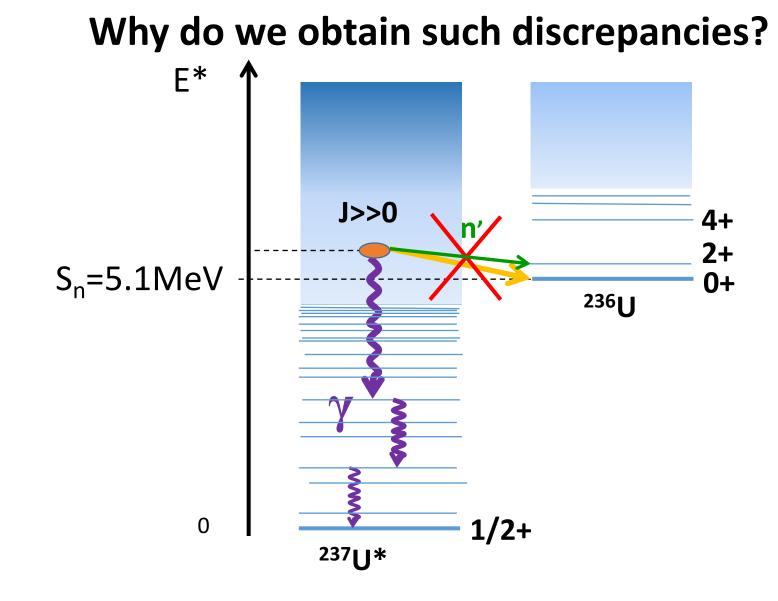
Surrogate-reaction method in inverse kinematics

Other reactions possible: (d,p), (d,t)...


$$\sigma_{n,decay}^{A}(E^{*}) = \sigma_{CN}^{A+1}(E^{*}) \cdot P_{decay}^{surro}(E^{*})$$

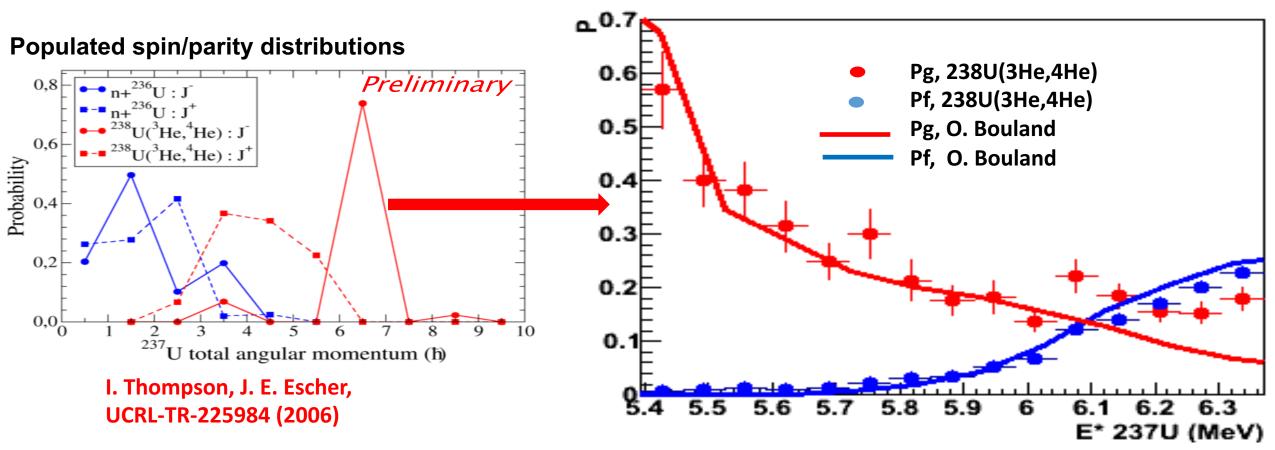
Theory Experiment

Validity of the surrogate-reaction method $\sigma_{n.decav}^{A}(E^{*}) = \sigma_{CN}^{A+1}(E^{*}) \cdot P_{decav}^{surro}(E^{*})$ Neutron-induced and surrogate reaction must lead to the formation of a compound nucleus : Decay only depends on E^* , J and π !! Populated J and π distributions are equal $P_{decav}^{surro}(E^*) = P_{decav}^n(E^*)$ OR Decay independent of J and π (Only valid at high E* in the Weisskopf-Ewing limit)


Not possible to say a priori if a reaction meets these conditions. Data obtained with the surrogate method need to be compared to neutron-induced data!

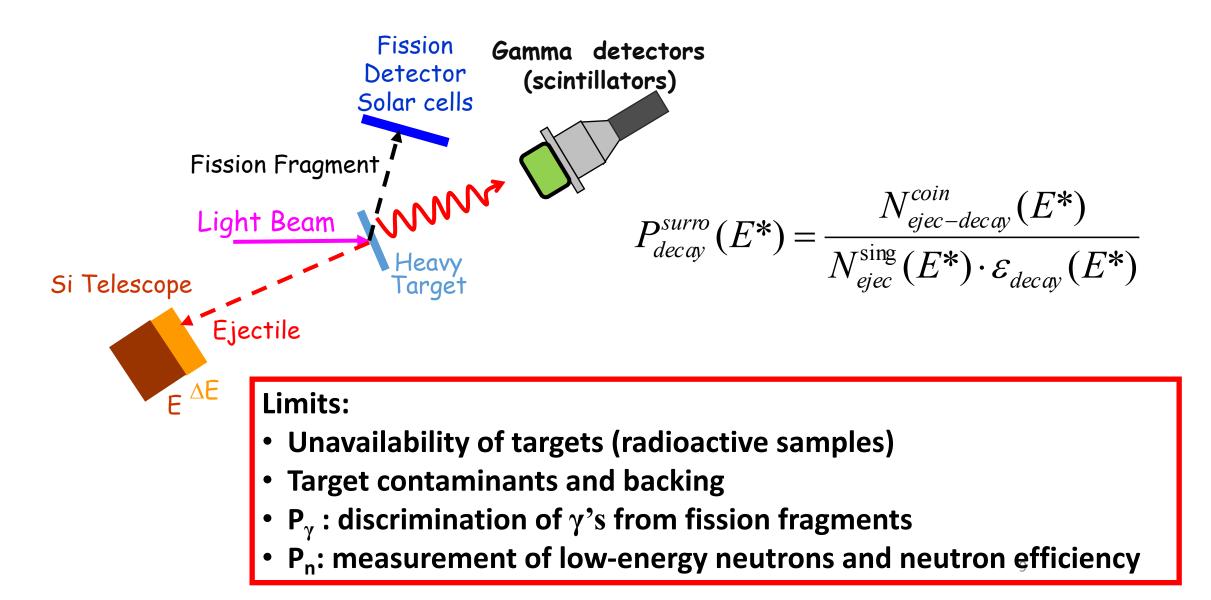
Preliminary results!

3He + 238U-> 4He + 237U ↔ n + 236U


General finding : Good agreement for fission probabilities but strong disagreement for γ -emission probabilities

Strong sensitivity of neutron emission to $J\pi$!

Preliminary results!


3He + 238U-> 4He + 237U

O. Bouland & B.Jurado, contribution to ND2016

 P_{γ} is much more sensitive to J^{π} than P_{f} but it is possible to correct for J^{π} effects

Setup for measurement of fission and gamma-emission probabilities in direct kinematics

Advantages of Inverse kinematics:

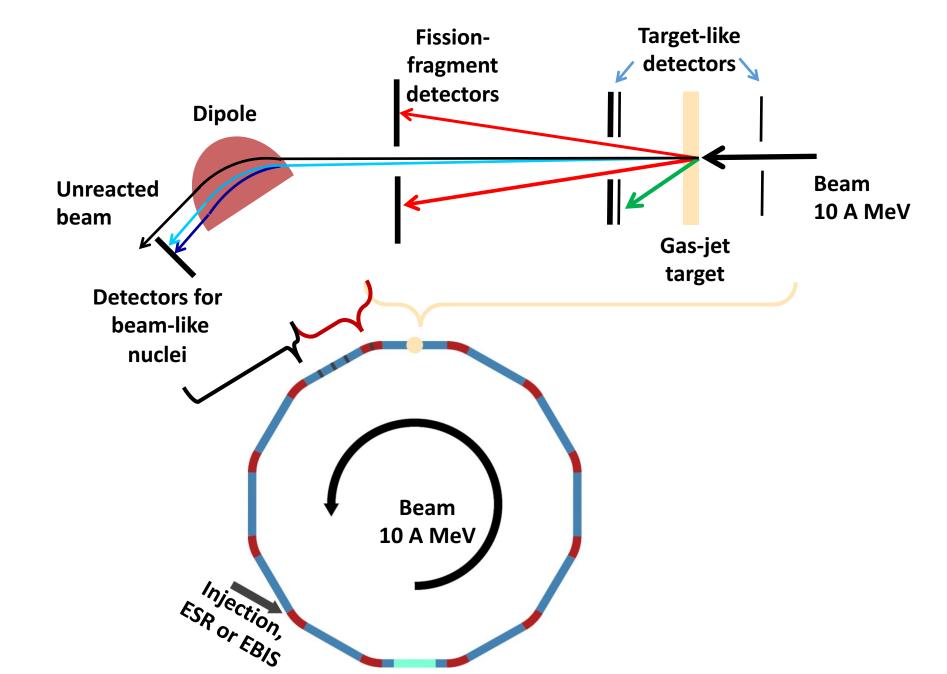
-Access to very short-lived nuclei


-Detection of heavy residues

BUT

- Required E* resolution ≤ 100 keV
- Target contaminants and target windows have to be avoided

Advantages of heavy-ion storage rings

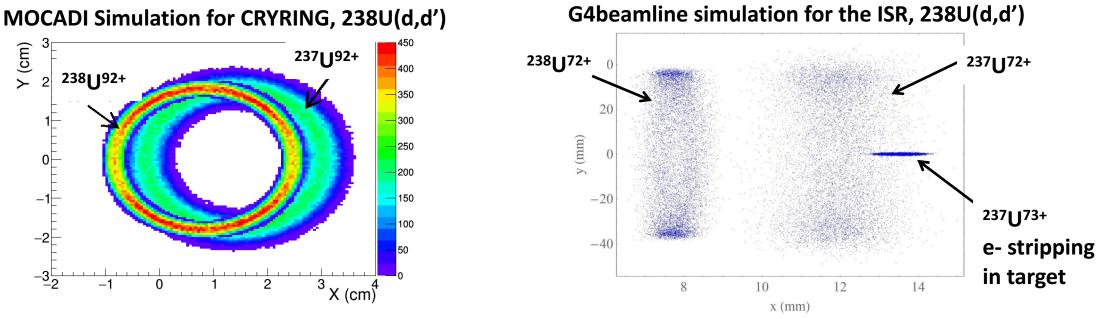


- Beam energies ~ 10 A MeV
- Beam cooling → Excellent energy and position resolution of the beam
- Use of ultra-thin in-ring gas-jet targets ~10¹³/cm².
 Effective target thickness increased by ~10⁶ due to revolution frequency
- Pure targets, pure beams, (no backing, no contaminants)
- Pure isomeric beams!

electron cooler

Challenge: Detectors in Ultra-High Vacuum (10⁻¹¹-10⁻¹² mbar)!

Set-up for decay-probability measurements at storage rings



Results of feasibility studies

•Ultra-thin gas-jet target + cooled beams + highly segmented target-like detectors (128X128 ch) \rightarrow E* resolution ~ 100 keV!

•Fission detection efficiency up to 95 %!

•Possible to separate heavy residues produced after γ and neutron emission

Simulation by Manfred Grieser!

•Detection efficiencies of heavy residues: 30 -90%!

Decay probabilities for ALL open channels can be measured simultaneously with good E* resolution, unique!

First measurements with stable beams

•Validate the technology by comparing with decay probabilities measured in direct kinematics:

→¹⁸¹Ta(d,d')
→ ²³⁸U(d,d')

•Study of the (d,p) reaction in several regions by comparing with well known neutron cross sections

→¹⁸¹Ta(d,p) → ¹⁹⁷Au(d,p) → ²⁰⁸Pb(d,p) → ²³⁸U(d,p)

•Study of the (d,d') reaction in the Zr region

→ 94 Zr(d,d') \Leftrightarrow n+ 93 Zr , deduce 93 Zr(n,γ) and compare with available data → 96 Zr(d,d') \Leftrightarrow n+ 95 Zr (T_{1/2}=64 d), deduce 95 Zr(n,γ), which is unknown and very important for the s-process!

Conclusions

Storage rings are the ideal devices to carry out high resolution surrogate reaction studies in inverse kinematics:

- →No target contaminants or backing, pure (isomeric) beams
- \rightarrow E* resolution ~ 100 keV

→Simultaneous measurement of all decay probabilities with very large efficiencies