

Ragandeep Singh Sidhu

NUCLEAR ASTROPHYSICS AT RINGS AND RECOIL SEPARATORS

13 March – 15 March 2018, GSI, Darmstadt, Germany

Radioactive decays of highly-charged ions

- •Few-electron ions well-defined quantum-mechanical systems
- •New decay modes (bound-pair-creation, bound-state beta decay, etc.)
- Influence of electrons on radioactive decay
- Nuclear Astrophysics
 High temperature/density environments → high ionisation

Bound-State β-decay

Bound-State β -decay of ¹⁶³Dy

s process: slow neutron capture and β - decay near valley of β stability at $kT = 30 \text{ keV}; \rightarrow \text{high atomic charge state} \rightarrow \text{bound-state } \beta \text{ decay}$

 $T_{1/2} = 48$ days

branchings caused by bound-state β decay

HELMHOLTZ I

M. Jung et al., Phys. Rev. Lett. 69 (1992) 2164

HELMHOLTZ 🗔 9

Sunday, April 18, 2010

10 mm

Experiment

Main Problem

Problem:

The Q-value of 31 keV Impossible to resolve in the ESR by means of mass spectrometry

Solution:

No daughter hydrogen-like ²⁰⁵Pb⁸¹⁺ ions shall be transmitted to the ESR

Monoisotopic separation in the FRS

•Primary beam ²⁰⁶Pb at about 600 MeV/u
•⁹Be production target (possibly with Nb backing)
•Energy degrader – about 2 g/cm² Al @S2
•Injection of pure ²⁰⁵Tl⁸¹⁺ beam into the ESR

Monoisotopic separation in the FRS

erc

To remind:

A similar separation has been achieved in the ²⁰⁷TI boundstate beta decay measurements

T. Ohtsubo et al., Phys. Rev. Lett. 95 (2005) 052501

Approximate Beam Parameters

- Optimum FRS Target ~2 g/cm² ⁹Be (may be with Nb baking)
- S2: ~2 g/cm² AI degrader; otherwise vacuum
- S4: irrelevant

erc

ASTRUm

 Energy adjusted such that after the final matter in the ESR the energy of ²⁰⁵TI⁸¹⁺ is 400 MeV/u

Experimental Storage Ring ESR

Experiment

- Stacking in the ESR of at least 10⁷ bare ²⁰⁵Tl⁸¹⁺
- Waiting time (several hours, low electron current)
- Dense Gas-Jet Target (to strip the electron from daughter ions)
- Particle detectors inside the ESR (detection of daughters)
- Schottky spectroscopy (monitoring intensities of all ions)

Similar experimental procedure as in ¹⁸⁷Re case

F. Bosch et al., Phys. Rev. Lett. 77 (1996) 5190

Relevance for FAIR

Test of Equipment for FAIR

erc

ASTRUm

Proposal for an experiment to be conducted at FRS/ESR **Measurement of the bound-state beta decay of bare** ²⁰⁵Tl ions Updated from previously accepted proposal E100

For the LOREX, NucCAR, SPARC and ILIMA Collaborations

Regarding the proposal "Measurement of the bound-state beta decay of bare ²⁰⁵TI ions" (Proposal E121), the G-PAC recommends this proposal with **highest priority** (A) and that **21 shifts of main beam time** be allocated for this measurement.

HFI MHOL

Many-many thanks to all colleagues from all over the world !!!

Thank you for your attention

