

The DRAGON facility

Annika Lennarz Postdoc | Division of Physical Sciences | TRIUMF

Nuclear Astrophysics at Rings and Recoil Separators – GSI, Darmstadt March 13th, 2018

- I. DRAGON introduction
- II. Gas target & inverse kinematics
- III. Separator specifications
- IV. Particle Detection & Identification
- V. Summary/Outlook

I. Introduction

TRIUMF facility

- Production of rare ion beams
- Irradiation of thick production target with proton beam
- Generated in sector-focused H⁻ cyclotron

500 MeV proton beam Up to ~100 μA

RIUMF

TRIUMF ISAC facility

- Beams reaccelerated through 35 MHz RFQ with A/q<30
- 105 MHz variable energy DTL (3 ≤ A/q ≤ 6)
- Energies between 0.15 MeV/u
 & 1.5 MeV/u
- Low-energy regime well suited for reaction studies for novae & X-ray bursts

Recoils And Gamma-rays Of Nuclear reactions

- Windowless gas target
- BGO γ -detection array
- 3 MEME mass separator

#reactions per incident ion

Recoil detection system

Recoils And Gamma-rays Of Nuclear reactions

II. Gas target and inverse kinematics

RIUMF

Radiative capture in inverse kinematics

- (p, γ) and (α, γ) reactions
- Mainly resonant capture:
 A + b = C + γ

σ ir	ı μb	range
------	------	-------

Important consideration:

If ratio m_{beam}/m_{target} is <u>large</u>, recoil energy can only be relatively small amount lower than beam energy!

DRAGON gas target

- Windowless, differentially pumped, recirculating gas target (H₂ or He)
- 1-10mbar (pumping constraints)
- LN₂ cooled zeolite cleaning trap

Figure from D. Hutcheon et. al., Nucl. Instr. Meth. A 498,, 190 (2003)

FLOW

EXHAUST

SENSOR

GAS SUPPLY

DRAGON gas target

 $(H_2 \text{ or He})$

- 1-10mbar (pumping constraints)
- LN₂ cooled zeolite cleaning trap

Figure from D. Hutcheon et. al., Nucl. Instr. Meth. A 498,, 190 (2003)

- Extraction of cross section & resonance strength requires knowledge of **stopping power** of heavy ions in H or He
- SRIM code shows 20-30% deviation from experiment
- Stopping power measurement requires knowledge of effective length

Figure from D. Hutcheon et. al., Nucl. Instr. Meth. A 498,, 190 (2003)

DRAGON gas target – DON'TS!

We learned the hard way...

- Pumping <u>Xenon</u> resulted in <u>catastrophic failure</u> of 6 turbo pumps!
- High atomic weight → noble gases generate large quantities of heat when striking the rotor
- Low specific thermal capacity \rightarrow little heat transfer to stator or housing

 \rightarrow High rotor temperatures!

DRAGON gas target – DON'TS!

We learned the hard way...

- **BGO** ($Bi_4Ge_3O_{12}$) array (30 detectors)
- High γ -ray detection efficiency (40 to 80%, depending on • multiplicity & energy)
- Combined with TOF \rightarrow low random coincidence rate!
- Caveat:
 - Rely on **simulation** for detection efficiency
 - \rightarrow dominates syst. error of the experiment!
 - Limited γ -ray energy resolution (FWHM ~9%)
- **Segmented** BGO array along beam axis \rightarrow Information about location of reaction
- BGO hit pattern \rightarrow resonance energy (0.5%)

γ -ray detection – BGO array

- **BGO** (Bi₄Ge₃O₁₂) array (30 detectors)
- High γ-ray detection efficiency (40 to 80%, depending on multiplicity & energy)
- Combined with TOF → low random coincidence rate!
- <u>Caveat:</u>
 - Rely on simulation for detection efficiency
 - → dominates syst. error of the experiment!
 - Limited γ-ray energy resolution (FWHM ~9%)
- Segmented BGO array along beam axis → Information about location of reaction
- BGO hit pattern → resonance energy (0.5%)

- Medium with better timing properties (sub-ns) and/or energy resolution
- High-efficiency scintillation material → LaBr₃
- Timing between **prompt** γ -rays & accelerator beam bunch arrival time \rightarrow Reaction position

Resonance timing systematics

Timing method outperforms the z-position method!

 z_0 within a few events, to ~ ±0.3cm accuracy

Even for larger sample sizes, broadness of distribution in zposition method results in larger centroid uncertainties

> Next: Proof-of-principle test this summer

III. Separator specifications

Defines range of reactions that can be measured!

- **Maximum** possible **recoil angle** when E_{γ} is maximized for $E_{\gamma} = Q + E_{c.m.}$
- AND emission perpendicular to incident beam direction ($\theta_3 = \pi/2$)
- **Nominal acceptance** (w.r.t zero):

21 mrad & +/- 4% in E

Figure from C. Ruiz et. al., Eur. Phys. A 50, 99 (2014)

Figure from C. Ruiz et. al., Eur. Phys. A 50, 99 (2014)

Figure from C. Ruiz et. al., Eur. Phys. A 50, 99 (2014)

Figure from C. Ruiz et. al., Eur. Phys. A 50, 99 (2014)

- DRAGON designed for beam rigidities up to 0.55 Tm
- Limiting factors:
 - a) Max. field strength at MD1 (0.55 T)
 - b) Max. sustainable voltage of ED1
- B-field limiting factor for ion energies below 1.34 A MeV
- E-field limiting factor for ion energies corresponding to max. voltage (230 kV)

$$R_{M} = \left| B \right| \rho = \frac{p}{q}$$
$$R_{E} = \left| \varepsilon \right| \rho = \frac{pv}{q}$$

- Higher masses → boost charge state
- **Problem:** Difficult to equilibrate in very high charge states
- ightarrow Higher fields desired
- BUT: Depends on conditioning ability & power supply capability

- High intrinsic beam suppression: 10⁸ to 10¹³ (proton capture)
- Depends on **beam energy & emittance**
- >10¹⁴ raw suppression demonstrated for ${}^{3}\text{He}(\alpha,\gamma)^{7}\text{Be}$
- Coincidence measurement with prompt γrays & PID cuts & TOF

→ suppression factor of ~10¹⁵ for p-capture & ~5x10¹⁷ for α -capture

Beam suppression is **NOT** described by a single number, but determined by mass & charge difference, decay mode, energy, detectors, etc...

Figure from D. Hutcheon et al. NIMRB 266 (2008)

IV. Particle Detection and Identification

RTRIUMF

RTRIUMF

RIUMF

TRIUMF

Particle detection & identification - Beam composition

- ISOL beams may contain isobaric contaminants
- Tradeoff between △M/M of mass separator to transmission (beam intensity)
- Stable beams may contain A/q contaminants from multi-charge ion source

Δ E-E & BGO distr. allows separation of isobars

& isobaric reactions

Attenuated beam run

Annika Lennarz – NARRS Workshop

Particle detection & identification

DRAGON designed to handle contaminants

- → Particle separation & identification
- $\rightarrow \Delta E$ -E excellent separation especially at lower energies

Figure from C. Vockenhuber et. al., NIM Phys. Res. A 603, 372-378 (2009)

Using: Δ E-E, MCP TOF & Separator TOF, γ -energy, BGO hit pattern

Figure from G. Christian et. al., Phys. Rev. C. 97, 025802 (2018)

Figure from C. Vockenhuber et. al., NIM Phys. Res. A 603, 372-378 (2009)

Particle detection – Hybrid detector

Combine properties of IC (Δ E) and DSSSD (operation, position sensitivity & resolution) in

hybrid detector

- Time difference between incoming beam bunch (measured from the ISAC I RFQ signal) and the upstream MCP
- Reconstruct separator TOF without prompt γ rays!
- \rightarrow Allows for singles analysis

Figure from G. Christian et. al., Phys. Rev. C. 97, 025802 (2018)

V. Outlook and Challenges

Successful program at DRAGON

Reaction	Motivation		Intensity (s ⁻¹)	Purity (beam:cont.)
²¹ Na(<i>p,</i>) ²² Mg	1.275 MeV line emission in ONe novae		5 x 10 ⁹	100%
¹² C(<i>α,γ</i>) ¹⁶ O	Helium burning in red giants		3 x 10 ¹¹ to 1 x 10 ¹²	
^{26g} Al(<i>p, γ</i>) ²⁷ Si	Nova contribution to galactic ²⁶ Al		3 x 10 ⁹	30,000:1
¹² C(¹² C, <i>γ</i>) ²⁴ Mg	Nuclear cluster models		3 x 10 ¹¹	
⁴⁰ Ca(<i>α,γ</i>) ⁴⁴ Ti	Production of ⁴⁴ Ti in SNII		3 x 10 ¹¹	10,000:1 - 200:1
²³ Mg(<i>p,γ</i>) ²⁴ Al	1.275 MeV line emission in ONe novae		5 x 10 ⁷	1:20 – 1:1,000
¹⁷ Ο(<i>α,γ</i>) ²¹ Ne	Neutron poison in massive stars		1 x 10 ¹²	
¹⁸ F(<i>p,</i>) ¹⁹ Ne	511 keV line emission in ONe novae		2 x 10 ⁶	100:1
³³ S(<i>p, γ</i>) ³⁴ Cl	S isotopic ratios in nova grains		1 x 10 ¹⁰	
¹⁶ Ο(<i>α,γ</i>) ²⁰ Ne	Stellar helium burning		1 x 10 ¹²	
¹⁷ O(<i>p, y</i>) ¹⁸ F	Explosive hydrogen burning in novae		1 x 10 ¹²	
³ Не(<i>а,ү</i>) ⁷ Ве	Solar neutrino spectrum		5 x 10 ¹¹	
⁵⁸ Ni(<i>p, γ</i>) ⁵⁹ Cu	High mass tests (p-process, XRB)		6 x 10 ⁹	
^{26m} Al(<i>p, y</i>) ²⁷ Si	SNII contribution to galactic ²⁶ Al		2 x 10 ⁵	1:10,000
³⁸ K(<i>p, y</i>) ³⁹ Ca	Ca/K/Ar production in novae		2 x 10 ⁷	1:1
¹⁹ Ne(<i>p, </i>	¹⁹ F abundance in nova ejecta		2 x 10 ⁷	1:1 to 4:1
²² Ne(<i>p, γ</i>) ²³ Na	NeNa cycle; explosive H burning in classical novae		2 x 10 ¹²	
⁷ Be(α,γ) ¹¹ C	v-p process	Annika Lennarz – NARRS Workshop)	1:200 to 1:1000 70

• $\frac{12}{C(\alpha,\gamma)^{16}O}$

- Suffers from limited acceptance
- Energy resolution (γ-ray detection)
- \rightarrow Upgrade to LaBr3 array
- $\frac{^{76}\text{Se}(\alpha,\gamma)^{80}\text{Kr}}{}$
 - Suffers from high leaky beam rate
 - \rightarrow "Overwhelming" MCPs
 - Reaching rigidity limits (ED voltages)

- $\frac{^{15}O(\alpha,\gamma)^{19}Ne}{}$
 - Low intensity
 - Challenging normalization
 - PID expected to be straight forward
- ²²Na(*p*, *y*)²³Mg
 - Overhead
 - Clean-up
 - Safety

DRAGON designed to study **nuclear reactions** relevant for nuclear astrophysics in **inverse kinematics**

"Strengths"

- Gas target (variable gas & pressure)
 → enables radioactive beam exp.
- High beam suppression
- Location (access to beams)
- γ-coincidence measurements
- Variable end-detector system
- TOF (local & separator)
- RF Timing
- Beam Diagnostics

<u>"Weaknesses"</u>

- Limited rigidity
- \rightarrow Limitations for higher masses
- Simulation required for detection efficiency
- Limited γ-energy resolution w BGO array

PID

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Acknowledgements

C. Ruiz, M. Alcorta, C. Bruni, A.A. Chen, G. Christian, D. S. Connolly, B. Davids, C. Diget, B. R. Fulton, R. Giri, U. Greife, D. Hutcheon, A. M. Laird, A. Lennarz, G. Lotay, A. Psaltis, A. Shotter, L. Principe, T. Psaltis, M. Williams, R. Wilkinson

UNIVERSITY OF

THE

THE UNIVERSITY of EDINBURGH

Universit

ЯМ

OAK RIDGE National Laboratory

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

Follow us at TRIUMFLab

f

The DRAGON facility

Annika Lennarz Postdoc | Division of Physical Sciences | TRIUMF

Nuclear Astrophysics at Rings and Recoil Separators – GSI, Darmstadt March 13th, 2018

The DRAGON facility

Annika Lennarz Postdoc | Division of Physical Sciences | TRIUMF

Nuclear Astrophysics at Rings and Recoil Separators – GSI, Darmstadt March 13th, 2018