Study of the Isovector Optical Potential from the Decay of ⁵⁹Mn Populated by the ¹¹B+⁴⁸Ca Reaction

ASHTON FALDUTO

CENTRAL MICHIGAN UNIVERSITY

Overview

Background

Motivation

Experiment

Analysis

Summary

How are the Elements Created?

Explosive Nucleosynthesis:

*No longer formed through charged particle reactions

p-process

- 2-3x10⁹K
- short time scale

	⁷⁸ Sr	⁷⁹ Sr	⁸⁰ Sr	⁸¹ Sr	⁸² Sr	⁸³ Sr	⁸⁴ Sr
	⁷⁷ Rb	⁷⁸ Rb	⁷⁹ Rb	⁸⁰ Rb	⁸¹ Rb	⁸² Rb	⁸³ Rb
	⁷⁶ Kr	⁷⁷ Kr	⁷⁸ Kr	⁷⁹ Kr	⁸⁰ Kr	⁸¹ Kr	⁸² Kr
	⁷⁵ Br	⁷⁶ Br	⁷⁷ Br	⁷⁸ Br	⁷⁹ Br	⁸⁰ Br	⁸¹ Br
t	⁷⁴ Se	⁷⁵ Se	⁷⁶ Se	⁷⁷ Se	⁷⁸ Se	⁷⁹ Se	⁸⁰ Se
	⁷³ As	⁷⁴ As	⁷⁵ As	⁷⁶ As	⁷⁷ As	⁷⁸ As	⁷⁹ As
	⁷² Ge	⁷³ Ge	⁷⁴ Ge	⁷⁵ Ge	⁷⁶ Ge	⁷⁷ Ge	⁷⁸ Ge
 z	⁷¹ Ga	⁷² Ga	⁷³ Ga	⁷⁴ Ga	⁷⁵ Ga	⁷⁵ Ga	⁷⁷ Ga
	⁷⁰ Zn	⁷¹ Zn	⁷² Zn	⁷³ Zn	⁷⁴ Zn	⁷⁵ Zn	⁷⁶ Zn

Other nucleosynthesis: Big Bang, Cosmic Ray Spallation, Stellar/ Burning

How are the Elements Created?

Explosive Nucleosynthesis:

*No longer formed through charged particle reactions

s-process

- 1-2x10⁸K
- 1000's of years

	⁷⁸ Sr	⁷⁹ Sr	⁸⁰ Sr	⁸¹ Sr	⁸² Sr	⁸³ Sr	⁸⁴ Sr
	⁷⁷ Rb	⁷⁸ Rb	⁷⁹ Rb	⁸⁰ Rb	⁸¹ Rb	⁸² Rb	⁸³ Rb
	⁷⁶ Kr	⁷⁷ Kr	⁷⁸ Kr	⁷⁹ Kr	⁸⁰ Kr	⁸¹ Kr	⁸² Kr
	⁷⁵ Br	⁷⁶ Br	⁷⁷ Br	⁷⁸ Br	⁷⁹ Br	⁸⁰ Br	⁸¹ Br
	⁷⁴ Se	⁷⁵ Se	⁷⁶ Se	⁷⁷ Se	⁷⁸ Se	⁷⁹ Se	⁸⁰ Se
Ì	⁷³ As	⁷⁴ As	⁷⁵ As	⁷⁶ As	⁷⁷ As	⁷⁸ As	⁷⁹ As
	⁷² Ge	⁷³ Ge	⁷⁴ Ge	⁷⁵ Ge	⁷⁶ Ge	⁷⁷ Ge	⁷⁸ Ge
	⁷¹ Ga	⁷² Ga	⁷³ Ga	⁷⁴ Ga	⁷⁵ Ga	⁷⁵ Ga	⁷⁷ Ga
	⁷⁰ Zn	⁷¹ Zn	⁷² Zn	⁷³ Zn	⁷⁴ Zn	⁷⁵ Zn	⁷⁶ Zn

Other nucleosynthesis: Big Bang, Cosmic Ray Spallation, Stellar/ Burning

How are the Elements Created?

- >10⁹K and 10²⁰ neutrons/cm³
- Takes seconds

⁷⁸ Sr	⁷⁹ Sr	⁸⁰ Sr	⁸¹ Sr	⁸² Sr	⁸³ Sr	⁸⁴ Sr
⁷⁷ Rb	⁷⁸ Rb	⁷⁹ Rb	⁸⁰ Rb	⁸¹ Rb	⁸² Rb	⁸³ Rb
⁷⁶ Kr	⁷⁷ Kr	⁷⁸ Kr	⁷⁹ Kr	⁸⁰ Kr	⁸¹ Kr	⁸² Kr
⁷⁵ Br	⁷⁶ Br	⁷⁷ Br	⁷⁸ Br	⁷⁹ Br	⁸⁰ Br	⁸¹ Br
⁷⁴ Se	⁷⁵ Se	⁷⁶ Se	⁷⁷ Se	⁷⁸ Se	⁷⁹ Se	⁸⁰ Se
⁷³ As	⁷⁴ As	⁷⁵ As	⁷⁶ As	77 As	⁷⁸ As	⁷⁹ As
⁷² Ge	⁷³ Ge	⁷⁴ Ge	⁷⁵ Ge	⁷⁶ Ge	¥7 Ge	Ge 🖓
⁷¹ Ga	⁷² Ga	⁷³ Ga	⁷⁴ Ga	⁷⁵ Ga	⁷⁵ Ga	Ga Ga
⁷⁰ Zn	⁷¹ Zn	⁷² Zn	⁷³ Zn	⁷⁴ Zn	75 Zn	⁷⁶ Zn
N						

Data from Goriely, S. (1999)

We need a reaction theory to calculate these reaction rates which can be put into astrophysical models to calculate abundances

We use the Hauser Feshbach Statistical Model

The Hauser Feshbach Model

The Optical Potential Model

Nuclear reactions are modeled like light hitting a cloudy sphere

Particles can be scattered, transmitted, or absorbed

The optical potential can be expressed as:

U = V + iWReal, Scattered Imaginary, Absorbed
The imaginary term determines the absorption of
neutrons to form a compound nucleus

$$W = i(W_{scalar} + W_{vector})$$

No n/p ratio
dependence
Has n/p ratio
dependence

We care about the ratio because as neutron number increases we think the model will have less agreement

Neutron Energy Proton Energy Alpha Energy

54Fe Evidence Near Stability

Optical Potential Model is constrained by data near stability

A.P.D. Ramirez et al experiment

Deuteron beam on ⁵⁴Fe, ⁵⁶Fe, and ⁵⁸Fe

As neutron number increases, value was more underestimated

What happens as we move out of stability?

A.P.D. Ramirez, Phys.Rev.,C,2015

The yields of protons, alphas, and neutrons will tell us if a modification to the isovector potential is needed.

The yields of protons, alphas, and neutrons will tell us if a modification to the isovector potential is needed.

The yields of protons, alphas, and neutrons will tell us if a modification to the isovector potential is needed.

The yields of protons, alphas, and neutrons will tell us if a modification to the isovector potential is needed.

Experiment Setup

Tandem accelerator at Edward's Accelerator Laboratory at Ohio University

Experimental Setup

• Experiment: ⁴⁸Ca+¹¹B->⁵⁹Mn at 20 MeV

- Energy Calibration Run: ¹²C+¹¹B->²³Na at 20 MeV
- Other Targets: ²⁷Al, ¹⁹⁷Au, Empty

Particle Spectra

Alpha and Proton Spectra

Gamma and Neutron Spectra

Separation of Alphas and Protons

Calibration Detector 1 Alpha and Proton

Energy Calibration Si Detector

Calibration Data: ${}^{11}B+{}^{12}C \rightarrow {}^{23}Na$ at 20 MeV

Calibration Detector 1 Alpha and Proton

Energy Calibration Si Detector

Calibration Data: ${}^{11}B+{}^{12}C \rightarrow {}^{23}Na$ at 20 MeV

Alpha and Proton Decay

Calibrated ¹¹B+⁴⁸Ca \rightarrow ⁵⁹Mn alpha and proton spectra

Separation of Photons and Neutrons

Neutron Detector Background Spectra

Eliminate the background spectra

- Use empty targets to identify collimator, target, and beam stop peaks
- Identify peaks using photon spectra
- Calculated time from each location to neutron detector

Summary and Outlook

Measured the reaction $^{11}B+^{48}Ca \rightarrow ^{59}Mn$

Performed Particle Identification using Time of Flight for protons and alphas

Performed Particle Identification using Pulse Shape for neutrons and gammas

Identified background sources

In Progress/ To Be Completed:

- Absolute Time of Flight
- Integration of yields for protons, alphas, and neutrons
- Efficiency calibrations
- Theoretical analysis to determine if a correction is needed for imaginary isovector term

Thank You!

Collaborators:

George Perdikakis

Alexander Voinov Steven Grimes

Questions??

Support: Central Michigan University College of Graduate Studies