

Measurement of the neutron spectroscopic factor in ¹⁰Be

Ertao Li

Shenzhen University, Shenzhen, China Konkoly Observatory, Budapest, Hungary 15th Mar. 2018

Cooperation: China Institute of Atomic Energy

>Why Lithium, Beryllium, Boron?

- > How to study ${}^{9}Be(n, \gamma){}^{10}Be?$
- ➢Experiment
- **≻**Summary

- 1. Lithium puzzles are not solved yet
- 2. How to explain the Li-rich star
- 3. Influence some other nuclei
- 4. Influence the r-process nuclei
- 5.¹⁰Be (τ =2.3 Myr) /⁹Be ratio in the ESS

Li-rich star

Discovery of the most Li-rich star: revealing the nature of Li enrichment

Hong-Liang Yan¹, Jian-Rong Shi^{*1,2}, Yu-Tao Zhou^{1,2}, Yong-Shou Chen³, Er-Tao Li⁴, Suyalatu Zhang⁵, Shao-Lan Bi⁶, Ya-Qian Wu⁶, Zhi-Hong Li³, Bing Guo³, Wei-Ping Liu³, Qi Gao^{1,2}, Jun-Bo Zhang¹, Ze-Ming Zhou^{1,2}, Hai-Ning Li¹, and Gang Zhao^{†1,2}

submitted to Nature astronomy

MESA calculation 50Msun, Z=0.014 MESA: http://mesa.sourceforge.net/

What we have done

⁷Be(p, γ)⁸B PRL 77(1996)611 ⁶He(p, n)⁶Li PLB 527(2002)50 ⁸Li(n, γ)⁹Li PRC 71(2005)052801 ⁶He(p, γ)⁷Li CPL 27(2010)052101 ⁶He(p, γ)⁷Li EPJA 44(2010)1 ⁶Li(n, γ)⁷Li CPL 27(2010)052101 Review: SC 54(2011)1 ⁸Li(p, γ)⁹Be PRC 87(2013)017601 ^(α,γ) ¹¹B(p, γ)¹²C PRC 90(2014)067601 ⁷Be(d, τ)⁶Li CPC 42(2018)044001

What sites do we need to consider ${}^{9}Be(n, \gamma){}^{10}Be$ reaction

Neutron rich environments Can produce ⁹Be

谣训大学

• Direct measurement:
 Thermal neutron data :
 PR 71(1947)269
 • \mathbb{P} R 71(1947)2

AMS method:(µb) JPG**35** (2008) 014018

• Indirect method: Spectroscopic factor

¹⁰Be neutron spectroscopic factor

¹⁰Be neutron spectroscopic factor

Experimental setup

Z. H. Li ... et, al, PRC 87(2013)017601

E. T. Li (SZU) NARRS Mar. 15th, 2018

12/17

 S_{10Be} =1.48±0.10

¹⁰Be neutron spectroscopic factor

 S_{10Be} =1.48±0.10

• Summary:

谣训大学

- a) Li, Be, B have a lot of problems, and our project,
- b) Measured the angular distribution of ¹³C(⁹Be, ¹⁰Be)¹²C reaction,
- c) Obtained the neutron spectroscopic factor of ¹⁰Be by DWBA.
- Future plan:
- a) Calculate the reaction rates of ${}^{9}Be(n, \gamma){}^{10}Be$,
- b) Calculate its influence in BBN and CCSN,
- c) Binary stars & Neutron merger?

Natural Science Foundation of China 11505117 Natural Science Foundation of Guangdong Province 2015A030310012

Thank you for your attention.

Advantages:

- 1. Small error of S_{13C}
- 2. Simple neutron transfer mechanism

 ${}^{12}C({}^{13}C, {}^{12}C){}^{13}C$ S_{13C}=0.81±0.04

NPA 284(1977)114