Pushing DRAGON beyond its acceptance limits: The ${}^{7}\text{Be}(\alpha, \gamma){}^{11}\text{C}$ reaction

Thanassis Psaltis for the DRAGON Collaboration

Nuclear Astrophysics Group

Department of Physics & Astronomy, McMaster University

Nuclear Astrophysics at Rings and Recoil Separators Darmstadt, March 13th, 2018

The DRAGON Collaboration

A. A. Chen¹ • D. S. Connolly² • B. Davids² • N. Esker² • G. Gilardy³
U. Greife⁴ • W. Huang² • D. A. Hutcheon² • J. Karpesky⁴ • A. Lennarz²
J. Liang¹ • M. Lovely⁴ • S. N. Paneru⁵ • A. Psaltis¹ • R. Giri⁵
C. Ruiz² • G. Tenkila⁶ • A. Wen⁶ • M. Williams^{2,7}

¹ McMaster University, ² TRIUMF, ³ University of Notre Dame, ⁴ Colorado School of Mines, ⁵ Ohio University, ⁶ University of British Columbia, ⁷ University of York

Introduction & Motivation

Image Credit: Rob Franke

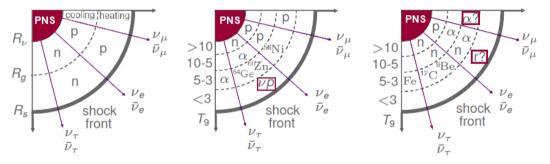
Introduction: νp -process as the origin of p-nuclei

Occurs in core-collapse supernovae when **proton-rich** ejecta interact with the ν -driven wind, creating neutrons.

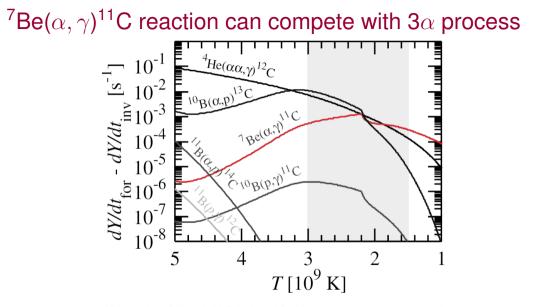
Bypasses the *rp*-process β^+ waiting-nuclei near A ~ 60-70 by fast (n,p) & (p, γ) reactions, enabling the reaction flow to heavier nuclei.

Can explain the solar abundances of ^{92,94}Mo & ^{96,98}Ru.

vp-process is very sensitive to both **supernova dynamics** & **nuclear physics**.

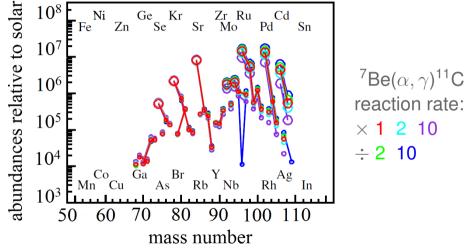

[S. Wanajo, Astrophys. J. 647, 1323 (2006)]
 [J. Pruet *et al.*, Astrophys. J. 644, 1028 (2006)]
 [C. Fröhlich *et al.*, Phys. Rev. Lett. 96, 142502 (2006)]

νp -process in a core-collapse supernova explosion

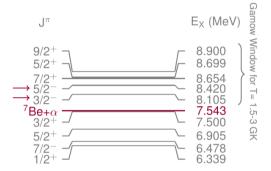

stalled shock $(t \approx 0.2 s)$

early ν -driven wind (t \approx 1.0 s ; Y_e > 0.5)

later ν -driven wind (t \approx 10 s ; Y_e < 0.5)



[Adapted from: J. José and C. Iliadis, Rep. Prog. Phys. 74, 096901 (2011)]


[Adapted from: S. Wanajo, H.-T. Janka and S. Kubono, Astrophys. J. 729, 46 (2011)]

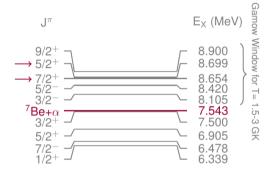
⁷Be(α, γ)¹¹C can alter *p*-abundances for A~90-110

[Adapted from: S. Wanajo, H.-T. Janka and S. Kubono, Astrophys. J. 729, 46 (2011)]

What we know about ${}^{7}\text{Be}(\alpha,\gamma){}^{11}\text{C}$

 ^{11}C

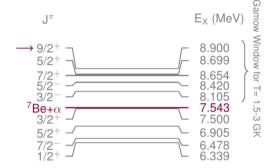
Hardie *et al.* studied the first two resonances above the α -threshold (E_x= 8.105 MeV and E_x= 8.421 MeV) with a radioactive ⁷Be target.


[G. Hardie et al., Phys. Rev. C 29, 1199 (1984)]

 $3/2^{-1}$

0.0

#NARRS18 | @psaltistha 10 / 29


 ^{11}C

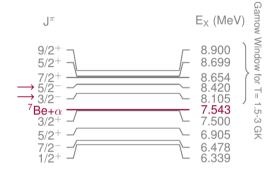
Wiescher *et al.* studied two resonances at $E_x = 8.654$ MeV and $E_x = 8.699$ MeV via the ¹⁰B(p, γ) reaction, however their (α , γ) resonance strengths remain still **unknown**.

[M. Wiescher et al., Phys. Rev. C 28, 1431 (1983)]

 $3/2^{-1}$

0.0

 ^{11}C


Yamaguchi *et al.* found a **new** resonance at E_x = 8.900 MeV with inelastic scattering of ⁷Be + α that is expected to enhance the total reaction rate of ⁷Be(α , γ)¹¹C by 10%.

[H. Yamaguchi et al., Phys. Rev. C 87, 034303 (2013)]

McMaster University

 $3/2^{-1}$

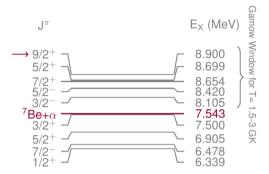
#NARRS18 | @psaltistha 12 / 29



The reaction rate of $^{7}\mathrm{Be}(\alpha,\gamma)^{11}\mathrm{C}$ for νp -process temperatures is based on two resonances

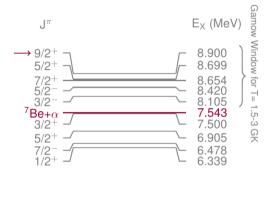
McMaster University

Description of the Experiment


Objectives of the Experiment

 First direct measurement of the E_x= 8.654 MeV & E_x= 8.699 MeV resonances. Measure their unknown strengths.

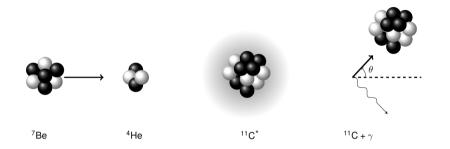
Objectives of the Experiment


 ^{11}C

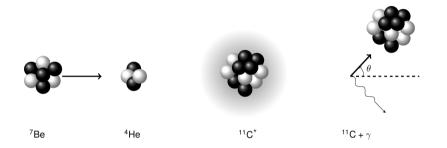
- First direct measurement of the E_x= 8.654 MeV & E_x= 8.699 MeV resonances. Measure their unknown strengths.
- 2. Exploratory measurement of the E_x = 8.900 MeV resonance.

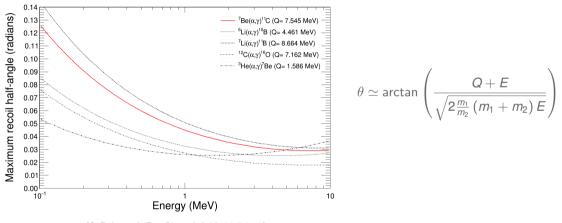
 $3/2^{-1}$

0.0


Objectives of the Experiment

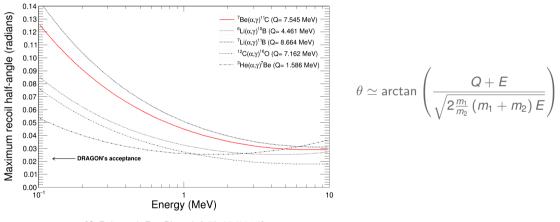
- First direct measurement of the E_x= 8.654 MeV & E_x= 8.699 MeV resonances. Measure their unknown strengths.
- 2. Exploratory measurement of the E_x = 8.900 MeV resonance.


Improve the reaction rate for ${}^{7}\mathrm{Be}(lpha,\gamma){}^{11}\mathrm{C}$ at νp -process temperatures

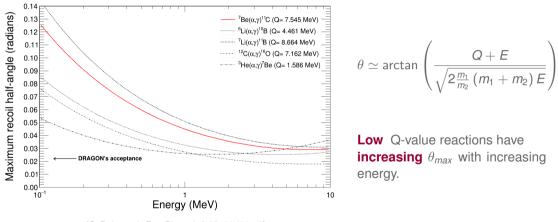


McMaster University

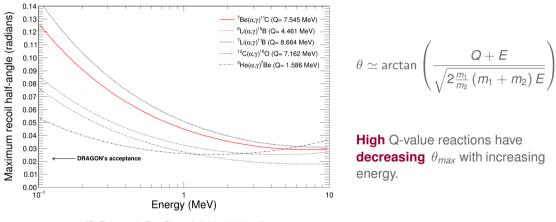
stha 16 / 29



DRAGON's Acceptance: 22 mrad vs $^7\mathrm{Be}(lpha,\gamma)^{11}\mathrm{C}:\sim$ 43 mrad

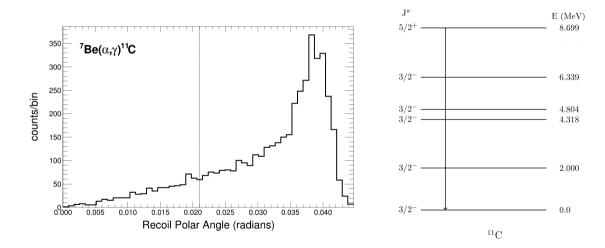

[C. Ruiz et al., Eur. Phys. J. A 50, 99 (2014)]

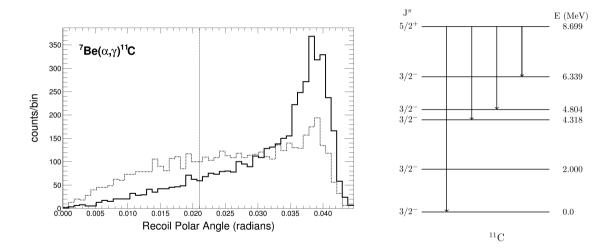
17 / 29

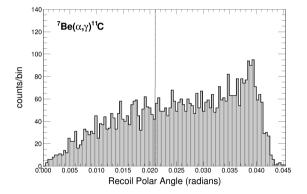


[C. Ruiz et al., Eur. Phys. J. A 50, 99 (2014)]

17 / 29

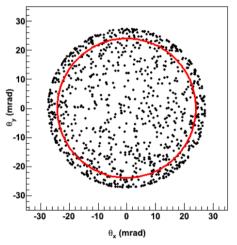




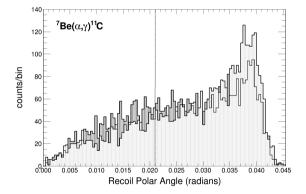


Effect of γ -ray branching ratios to recoil angle θ

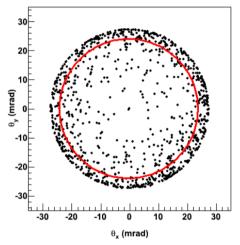
Effect of γ -ray branching ratios to recoil angle θ



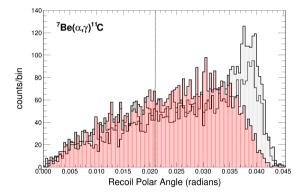
McMaster University


 7 Be $(\alpha, \gamma)^{11}$ C reaction rate with DRAGON (ν p-process) \checkmark #NARRS18 | @psaltistha 19/29

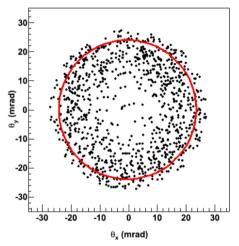
Uniform Distribution


 $W(\theta) = 1$

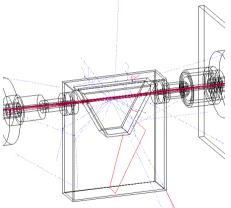
[L. Gialanella & D. Schürmann, PoS (ENAS 6), 058 (2013)]


Dipole Distribution

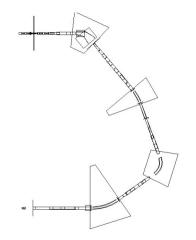
$$W(\theta) = \frac{3}{8\pi} \left(1 - \cos^2 \theta\right)$$


[L. Gialanella & D. Schürmann, PoS (ENAS 6), 058 (2013)]

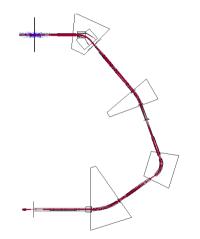
Dipole Distribution
W(
$$heta$$
) = $rac{3}{8\pi} \left(1 - \cos^2 \theta\right)$


Quadrupole Distribution

$$W(\theta) = \frac{15}{8\pi} \left(1 - \cos^2 \theta\right) \cos \theta^2$$


[L. Gialanella & D. Schürmann, PoS (ENAS 6), 058 (2013)]

Quadrupole Distribution
W(
$$\theta$$
) = $\frac{15}{8\pi} (1 - \cos^2 \theta) \cos \theta^2$

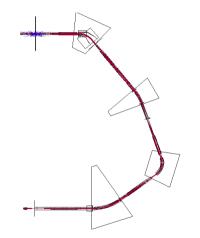

The **transmission** of the recoils and the **efficiency** of the BGO array of DRAGON were studied with the GEANT3 toolkit.

[Dario Gigliotti, M.Sc. Thesis, Univ. of Northern British Columbia, (2004)]

The **transmission** of the recoils and the **efficiency** of the BGO array of DRAGON were studied with the GEANT3 toolkit.

[Dario Gigliotti, M.Sc. Thesis, Univ. of Northern British Columbia, (2004)]

The **transmission** of the recoils and the **efficiency** of the BGO array of DRAGON were studied with the GEANT3 toolkit.


 6 Li(α, γ) reaction E_x= 5.920 MeV resonance as benchmark 60% transmission

[Dario Gigliotti, M.Sc. Thesis, Univ. of Northern British Columbia, (2004)]

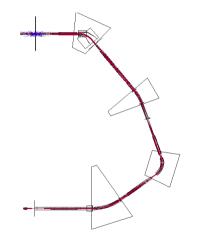
McMaster University

⁷Be(α, γ)¹¹C reaction rate with DRAGON (ν p-process)

#NARRS18 | @psaltistha 20 / 29

The **transmission** of the recoils and the **efficiency** of the BGO array of DRAGON were studied with the GEANT3 toolkit.

Recoil transmissions: 27% for E_x = 8.654 MeV resonance 18% for E_x = 8.699 MeV resonance


[Dario Gigliotti, M.Sc. Thesis, Univ. of Northern British Columbia, (2004)]

McMaster University

 7 Be(α, γ)¹¹C reaction rate with DRAGON (ν p-process)

#NARRS18 | @psaltistha 20 / 29

Testing the DRAGON: GEANT simulations

The **transmission** of the recoils and the **efficiency** of the BGO array of DRAGON were studied with the GEANT3 toolkit.

50% BGO array efficiency & 70% recoil detection efficiency

[Dario Gigliotti, M.Sc. Thesis, Univ. of Northern British Columbia, (2004)]

McMaster University

⁷Be(α, γ)¹¹C reaction rate with DRAGON (ν p-process)

#NARRS18 | @psaltistha 20 / 29

Beamtime during Schedule 132

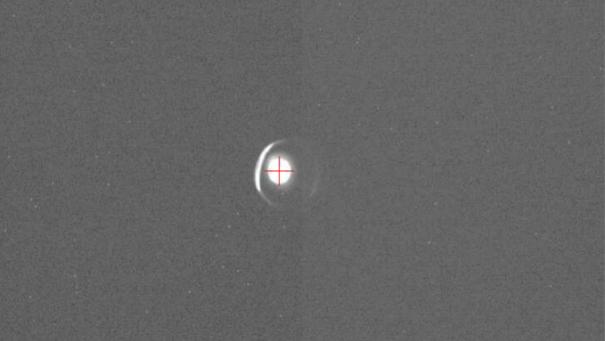
Stable Beam Week - Aug. 25 - Sept. 1

⁶Li: Studied a resonance at E_x = 5.920 MeV (E_r = 1459 keV, E_b = 612 keV/u) with known $\omega\gamma$ as a benchmark to study DRAGON's acceptance.

22 / 29

Stable Beam Week - Aug. 25 - Sept. 1

⁶Li: Studied a resonance at E_x = 5.920 MeV (E_r = 1459 keV, E_b = 612 keV/u) with known $\omega\gamma$ as a benchmark to study DRAGON's acceptance.


⁷Li: Run only at two ⁷Be energies (E_b = 437.5 & 431.6 keV/u) for isobaric contaminant measurements.

Stable Beam Week - Aug. 25 - Sept. 1

⁶Li: Studied a resonance at E_x = 5.920 MeV (E_r = 1459 keV, E_b = 612 keV/u) with known $\omega\gamma$ as a benchmark to study DRAGON's acceptance.

⁷Li: Run only at two ⁷Be energies (E_b = 437.5 & 431.6 keV/u) for isobaric contaminant measurements.

Not enough time for all ⁷Li energies and ¹²C CSD measurements.

Radioactive Beam Week - Sept. 2-11

 $^7\text{Be}{:}^7\text{Li}$ ratio was worse than 1:500 for most of the time and intensity close to 1 \times 10⁷ pps.

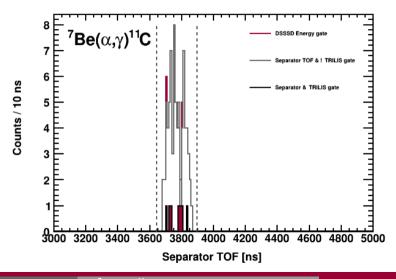
Radioactive Beam Week - Sept. 2-11

 $^7\text{Be}{:}^7\text{Li}$ ratio was worse than 1:500 for most of the time and intensity close to 1 \times 10⁷ pps.

TRILIS TAC signal was used to determine the ⁷Be content of the beam.

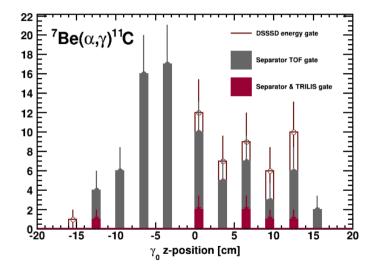
Radioactive Beam Week - Sept. 2-11

 $^7\text{Be}{:}^7\text{Li}$ ratio was worse than 1:500 for most of the time and intensity close to 1 \times 10⁷ pps.


TRILIS TAC signal was used to determine the ⁷Be content of the beam.

The resonance at E_x = 8.654 MeV was studied for a very short time, and most of the week was spent on the E_x = 8.699 MeV. Not enough time for the E_x = 8.900 MeV resonance.

24 / 29

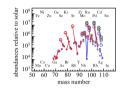

Really Preliminary Results

Really Preliminary Results - Separator TOF

McMaster University

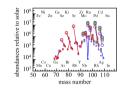
Really Preliminary Results - BGO γ Hit Pattern

• GEANT 3/4 simulations of DRAGON.


- GEANT 3/4 simulations of DRAGON.
- Additional beamtime for ⁷Be (probably Fall '18 with a carbide target) ⁷Li & ¹²C (discretionary).

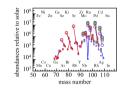
- GEANT 3/4 simulations of DRAGON.
- Additional beamtime for ⁷Be (probably Fall '18 with a carbide target)
 ⁷Li & ¹²C (discretionary).
- Ab-initio calculations (Petr Navrátil).

- GEANT 3/4 simulations of DRAGON.
- Additional beamtime for ⁷Be (probably Fall '18 with a carbide target)
 ⁷Li & ¹²C (discretionary).
- Ab-initio calculations (Petr Navrátil).
- Study of the ${}^{10}B(\alpha, p){}^{13}C$ with TUDA (?)


Summary

1. νp -process is very **sensitive** to few nuclear reactions and ⁷Be(α, γ)¹¹C can **alter** some nuclear inputs.

Summary


- 1. νp -process is very **sensitive** to few nuclear reactions and ⁷Be(α, γ)¹¹C can **alter** some nuclear inputs.
- 2. DRAGON can **successfully** handle reactions with large momentum cones.

Summary

- 1. νp -process is very **sensitive** to few nuclear reactions and ⁷Be(α, γ)¹¹C can **alter** some nuclear inputs.
- 2. DRAGON can **successfully** handle reactions with large momentum cones.

29 / 29

3. There is still a lot of work to be done!