

St. George and SECAR

Manoel Couder University of Notre Dame

Outline

- Facilities
- Ideas behind design
- Status of St. George
- Status of SECAR
- Questions/Discussion

St. George Science goals

- Study (with stable beam)
 - Reaction involved in Helium burning
 - Reaction involved in s-process
 - α radiative capture
 - Negative q-value (α ,n) (at low energy)

SECAR Science Takes Advantage of Unique FRIB Capabilities

From H. Schatz

- SECAR enables the FRIB user community to take advantage of NSCL/FRIB's unique low energy RIB production capabilities to directly measure astrophysical reaction rates
- Focus on p/α induced reactions on neutron-deficient unstable nuclei
- Addresses a long standing goal of the community not reached because of limited radioactive beam production capabilities, FRIB with SECAR addresses this

Accreting compact objects

- X-ray bursts
- Novae

Supernovae

- vp-process
- p-process
- Explosive burn

Extreme Stars

- Thorne Żytkow objects?
- Massive first stars

St. George

- 5 MV single ended electrostatic accelerator
- ECR source with 4
 gas
 bottles connected
- Intensity for Z>2
 ~50 pµA
- $\Delta E_{max} = 1 \text{keV}$

St. George

SECAR Layout

- SECAR consists of:
 - 2 Wien filters (VF1, VF2)
 - 8 Dipole magnets
 - 14 Quadrupoles ٠
 - 1 Quadrupole+Hexapole Q1(+Hex)
 - 3 Hexapoles
 - 1 Octupole

Max magnetic rigidity: 0.8 Tm

Gas Targets

- Jet important for mass separation
- St. George: HIPPO jet gas target ~10¹⁷ at/cm²
- SECAR: JENSA (See K. Schmidt talk)
 - Jet gas target ~ 10^{19} at/cm²
 - Extend gas target under construction
- γ-ray detection
 - St. George: Large Nal
 - SECAR: BGO array similar to DRAGON

NARRS2018

Objective Criteria for Design of the Electromagnetic Separator

- 100% transmission of selected charge state
- Start with Charge state selection
 - Separation outside the envelop of the recoils
 - "Clean capture" of the other charge state
- Criteria for mass selection based on mass resolving power
 - All spectrometers are designed with this approach
 - Scaled resolving power of DRAGON (for SECAR)
 - Compatible with Gaussian approximation for beam
- The tune for the worse case scenario need to be fully scalable for all electric and magnetic rigidities
 - One can find different/better tune for the other less demanding cases

Mass Resolving Power

• $x_1 = x_0(x|x) + a_0(x|a) + \frac{\delta E}{E} (x|E) + \frac{\delta M}{M} (x|M)$

We want mass selection to be accomplished at a point were (x|a) = 0 a focus and (x|E) = 0 achromatic

We also want to maximize (x|M)

Resolving power
$$\sim R_m = \frac{M}{\delta M} = \frac{(x|M)}{Recoil \ spot \ size}$$

Mass Separation Approach

- Both separators use Wien filter
 - In combination with the preceding magnetic elements, achromatic focus is achieved
 - St. George +/-100 kV
 - SECAR +/-270 kV
 - SECAR uses two Wien filter sections
- A "Clean-up section" following the mass separation provides additional momentum selection

Particle ID Detection Systems

- The energies involved in the planned St. George measurements is too low for ∆E-E technique →tof vs E (1D) method
 1Dx1D position sensitivity 1mm resolution
- For SECAR a full portfolio of detectors
 - Tof
 - Ionization chamber
 - Silicon detector

St. George ToF

SECAR: Strategies Adopted to Meet Requirements

From Jeff Blackmon

- Z selection via relative energy loss in gas (DE-E)
 - Provides isotopic selection when combined with A/q
 - $\ensuremath{\text{\tiny *}}$ Most effective for lower Z and higher E
- Total energy
 - Good discrimination between recoils and "leaky beam"
 - » Recoils have lower energy than beam
- Time-of-Flight (TOF) for velocity selection
 - SECAR time of flight
 - » Gamma detectors, target monitor or accelerator
 - Local TOF at 2 positions at focal plane

- Position
 - Position for A/q discrimination
 - Measure trajectory (2 or more positions)
 » Correct aberrations
 - » Improve background rejection
- Different techniques are better suited to different cases
- Design allows for flexibility to optimize system to experimental requirements

Focal Plane Overview

From Jeff Blackmon

Kyle Joerres, M.S. (LSU, 2017)

Separator for Capture Reactions

Status of St. George

- 100% Energy acceptance over +/-8%
 - Over the whole electric/magnetic rigidity

Status of St. George

- 100% Energy acceptance over +/-8%
 - Over the whole electric/magnetic rigidity
- Measurement of the angular acceptance

Status of St. George

- 100% Energy acceptance over +/-8%
 - Over the whole electric/magnetic rigidity
- Measurement of the angular acceptance
- Future: Focus on know reaction and rejection

Status of SECAR

- All the magnets are constructed, delivered, accepted
- First 12 magnets installed

Status of SECAR

The first Wien filter is under conditioning at the constructor

Status of SECAR

The first Wien filter is under conditioning at the constructor

Questions/Discussion

- Gas target (after Konrad's talk)
 - Characterization of the variable shape of jet
 - Fluid dynamic calculations
 - Limit of 2D
 - Post stripper
- Vacuum effect on rejection
- Method to tune aberration correction magnets
- Charge state distribution
 - Measurements and predictions
 - Joint effort? e.g. Slack Channel to share info & "track" progress

ETACHA

E. Lamour, P. D. Fainstein, M. Galassi, C. Prigent, C. A. Ramirez, R. D. Rivarola, J.-P. Rozet, M. Trassinelli, and D. Vernhet

PHYSICAL REVIEW A 92, 042703 (2015)

-Accounts for density of the ta -Accounts for correct energy lo -At low thickness shows/confir sensitivity to initial charge stat -Don't account for product of nuclear reaction

LISE++ [Noname]

Target St Stripper

D1 D, S II I1_sits

D2

S T FP_sits

M FP_PIN

Projectile

Options Experiment Settings Phy

48Ca20-140 MeV/u 1 pnA Fragment 42S16+

883 Set Un and	LISE++ for Excel								A LA	XIMINE		NMA	al					
W Secop 00	CODES : Charge, Global, PACE4, etc.						etc.	>	Spectrometric Calculator by J.Kantele									
PROJECTILE TRAGMENT				Radioactivity, decays >						The code "CHARGE" The code "GLOBAL"					۹Ţ	P4Ti	⊳∘Ti	₽ºTi
^s Be	The code "ETACHA4" : Windows GUI (beta) UNDER CONSTRUCTION !!!								The code "ETACHA4"					51 Sc	52 Sc	53 Sc	54 Sc	55 Sc
1800 mg/cm2	The code "ETACHA4" : DOS-version								Bl (search of 2-dimensional peaks)									
Brho 🔺	37Ca	38Ca	39Ca	NSCL / ISOL rates > NSCL / Europe / RIKEN primary beam lists >					Assistant to convert FORTRAN-files to C (v.2)					50Ca	51Ca	52Ca	53Ca	54Ca
slits			Set-up utilities >						PACE4 (fusion-evaporation code)					- Ca	Ca			- 64
_	3612	174	1814	Range o	ptimizer (Ga	s cell utility)			PACE4	& GEMINI o	alculations	plot		4914	5014	511/	5214	5314
8rho 2.2490 Tm	~~~			Gas pressure optimization for gas-filled dipole					MOTER (ray tracing code) MOTER's calculations plot					K	K	~.K	~~K	~~K
		20.00	6	CATCHE	R utility (ISO	L, Fusion-R	esidual)					100	-	40.0		50.5		50.
a,	³⁵ Ar	³⁶ Ar	r ³⁷ Ar	Stripper foil lifetime					43Ar	44Ar	45Ar	40Ar	≁′Ar	⁴⁰Ar	49Ar	Par	P1Ar	52Ar
net																		
	34CI	35CI	³⁶ CI	37CI	38CI	³⁹ CI	⁴⁰ CI	41CI	42CI	43CI	44CI	45CI	46CI	47CI	48CI	4 ⁹ CI	50CI	⁵¹ CI
5)	33 S	34 S	35 S	36 S	37 S	38 S	³⁹ S	40 S	41S	42 S	43 S	44 S	45 S	46 S	47 S	48 S	49 S	505
2 mgicm2																		
uno	32p	33p	34p	35p	36p	37p	38p	³⁹ p	40p	41p	42p	43p	44p	45p	46p	47p		
Si																		
COH10	24	22.01	³³ Si	34 Si	³⁵ Si	³⁶ Si	³⁷ Si	³⁸ Si	³⁹ Si	40 Si	41 Si	42 Si	43 Si	44Si	44Si	46SI		
f the ta	arge	et																
			³² AI	33AI	³⁴ AI	³⁵ AI	³⁶ AI	37AI	³⁸ AI	³⁹ AI	⁴⁰ AI	41AI	42A1	⁴³ Al				
nergy i	IOSS																	
s/confi	irm		³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg		⁴⁰ Mg		⁴² Mg				
57 00111																		
rge sta	ge states			³¹ Na	³² Na	³³ Na	³⁴ Na	³⁵ Na		37Na		³⁹ Na						
luct of																		
iuci or			29Ne	30Ne	31Ne	32No		34No	1									

http://www.insp.jussieu.fr/ETACHA-a-code-to-predict-the.html?lang=en

S 1 N Α Р

NARRS2018