

Towards a Study of the ⁴⁴Ti(α,p)⁴⁷V reaction at CRYRING

Oliver Forstner Friedrich-Schiller-Universität Jena, Helmholtz-Institut Jena

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA HELMHOLTZ Helmholtz Institute Jena

0. Forstner, NARRS Workshop @ GSI 2018

COMPIT.DOCER

Contents

- ⁴⁴Ti in Astrophysical Scenarios
- Previous Measurements
- Injecting Ti into CRYRING from local ion source
- Measuring alpha-capture reaction at CRYRING

False color image of the supernova remnant Cassiopeia A (Cas A). The picture is composited of data from the Spitzer Space Telescope, the Hubble Space Telescope and the Chandra X-ray Observatory.

Picture: NASA/JPL-Caltech

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

⁴⁴Ti detected in SN remnants

⁴⁴Ti γ-emission detectable at space observatories

Dominates light curve over ⁵⁶Ni about 4 yrs after explosion

First detected in CasA SNR (~1667 AD, Milky Way), later in SN1987A (LMC)

⁴⁴Ti SN Production

Produced in α -rich freeze out of core-collapse SN

 ${}^{28}\text{Si}(\alpha,\gamma){}^{32}\text{S} \rightarrow {}^{32}\text{S}(\alpha,\gamma){}^{36}\text{Ar} \rightarrow$ ${}^{36}\text{Ar}(\alpha,\gamma){}^{40}\text{Ca} \rightarrow {}^{40}\text{Ca}(\alpha,\gamma){}^{44}\text{Ti}$

Dominant consumption reaction:

 ${}^{44}\text{Ti}(\alpha,p){}^{47}\text{V}$

Cr 44 Cr 45 Cr 46 Cr 47 Cr 48 Cr 49 Cr 50 Cr 51 Cr 52 42.8 ms 60.9 ms 0.26 ms 472 ms 21.6 h 42 m 4.345 27.7010 d 83.789 Bp 0.887, 1.353 p 2.041 1083*, 1323 β+ 6.4.. B⁺ 1.4. 1.5. 320 677 87 308, 112 91, 153, 62, V 43 V 44 V 45 V 46 V 47 V 48 V 49 V 50 V 51 79.3 ms 150 ms | 111 ms 547 ms 422.6 ms 32.6 m 15.97 d 330 d 0.250 99.750 1.4.10" a β⁺ 0.7 γ 984, 1312 944... 1083 371, 1561 834 βp 2.78 β⁺ 6.1.. γ 40 β⁺ 1.9... γ (1794...) β⁺ 6.0... γ (2611) β 1554, 783 21, σ_{np} 0.007 Ti 42 Ti 43 Ti 44 Ti 45 Ti 46 Ti 47 Ti 48 Ti 49 Ti 50 208.14 ms 509 ms 58.9 a 3.08 h 7 44 5.41 5.18 B⁺ 5.4, 6.0.. β⁺ 5.8... 2288, 845. γ 78, 68..., g σ 1.1 β+ 1.0. (720...) σ 1.9 Sc 45 Sc 41 Sc 42 Sc 43 Sc 44 Sc 46 Sc 47 Sc 48 Sc 49 596 ms 3.89 h 3.35 d 61 s 0.68 s 58.61 h 3.92 h 18.75 s 83.79 d 43.67 h 57.2 m 271 β⁻ 0.7... γ 984, 1312 1038... 0.4, 1.5 (1002 1261 1157) β⁺ 1.2... γ 373... β 0.4, 0.6 8+ 5.5. β-2.0 1157. 889. σ 8.0 (2575, 2959) y (1762, 1623) y 142 Ca 42 Ca 43 Ca 45 Ca 47 Ca 40 Ca 41 Ca 44 Ca 46 Ca 48 96.941 1.03·10⁵ a 0.647 2.086 163 d 0.004 4.54 d , no y 1.9.10¹⁹ a β⁻ 0.3... γ (12), e⁻ β⁻ 0.7, 2.0.. γ 1297, 808 ~4 2β⁻, β⁻ σ 1.09 ong 0.18 0.41 108 ~15 0.00 0.65 0.00013

⁴⁴Ti amount in SNR dependent on reaction rate ratio of both reactions!

HELMHOLTZ

Helmholtz Institute Jena

FRIEDRICH-SCHILLER-

UNIVERSITÄT

JENA

Extract from the Karlsruhe Nuclide Chart showing the region around calcium and titanium isotopes.

TECHNISCHE

UNIVERSITÄT

DRESDEN

Nucleonica GmbH

Reaction Cross Section

Previous measurements above the Gamow window for core collapse SN

Margerin et al. @ ISOLDE \rightarrow upper limit at 3 GK Gamow window

 \rightarrow more data needed between 3 and 6 MeV $\rm E_{cm}$

Al-Abdullah et al., Eur. Phys. J. A 50, 140 (2014)

Magnetic storage ring, Bp≤1.44 Tm

Highly-charged ions from ESR or local ion source

Limitation due to injection RFQ: $q/A > 0.35 \rightarrow Ti^{16+}$ or higher, bare (Ti²²⁺) would intrinsically remove decay products

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

CRYRING Local Injector

Production of highly charged Ti-ions in EBIS: E.g. EBIS-A from DREEBIT GmbH, Ar¹⁸⁺ (fully ionized): 10⁵ at 1Hz

Injection of Ti into EBIS: MIVOC (Metal Ions from Volatile Organic Compounds), (trimethyl)pentamethyl-cyclopentadienyltitanium, $(CH_3)_5C_5Ti(CH_3)_3$, solid material, [Koivisto et al., NIMB 187 (2002) 111]

⁴⁴Ti available from PSI beam dump, up to 50 MBq (D. Schumann)

Dresden EBIS-A: DREEBIT GmbH

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA HELMHOLTZ Helmholtz Institute Jena

0. Forstner, NARRS Workshop @ GSI 2018 7

Ions accelerated with RFQ to 300 keV/u and injected into CRYRING

Acceleration in CRYRING to required beam energy: 0.8 – 1.6 MeV/u (corresponds Gamow window of 2 – 5 GK)

Expected storage time of highly charged Ti ions: some tens of seconds Rev. freq.: ⁴⁴Ti@1.1 MeV/u: 270 kHz

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

CRYRING Gas-jet Target

 $^{44}\text{Ti}(\alpha,p)^{47}\text{V}$ reaction in inverse kinematics at CRYRING gas-jet target with helium

Expected jet density: up to 10¹⁴ at/cm²

Detection of p with Si detectors close to target, energy $\sim 7 - 9$ MeV

Rate estimation: with 10^5 stored particles $\rightarrow \sim 1$ event/h

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Reaction Kinematics

Two options because of long ⁴⁴Ti lifetime:

- ⁴He-beam, ⁴⁴Ti target
- ⁴⁴Ti-beam, ⁴He gas target

⁴⁴Ti beam: α-capture reaction in inverse kinematics

Maximum recoil angle in Gamow window: ~2.4°

Protons emitted in all directions

Energy distribution of the proton, $E(^{44}Ti)=1.1 \text{ MeV/u}$

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Reaction Kinematics

Two options because of long ⁴⁴Ti lifetime:

- ⁴He-beam, ⁴⁴Ti target
- ⁴⁴Ti-beam, ⁴He gas target

⁴⁴Ti beam: α-capture reaction in inverse kinematics

Maximum recoil angle in Gamow window: ~2.4°

Protons emitted in all directions

Energy distribution of the recoil, E(44Ti)=1.1 MeV/u

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Comparison to Previous Experiments

ATLAS / Sonzogni et al.

- ⁴⁴Ti beam
- ⁴⁷V detected with recoil mass separator

ISOLDE / Margerin et al.

- ⁴⁴Ti beam, single-pass
- Detection of p after reaction
 - large emission angles
- 67 mbar He gas-cell
 - + high density
 - windows
 - energy loss

CRYRING

- ⁴⁴Ti beam, multi-pass
- Detection of p after reaction
 large emission angles
- Gas-jet target
 - "low" density
 - + windowless
 - + well defined reaction energy

Summary & Outlook

- ⁴⁴Ti of great interest, provides "smoking gun" for recent supernova
- Calculations and observations not in agreement → more experimental data in Gamow window needed
- Newly installed CRYRING@ESR provides excellent opportunity to measure alpha-capture reaction rate

- Accessible energies in the range of Gamow window for core-collapse SN
- Radioactive ⁴⁴Ti available in sufficient amounts from PSI beam dump
- More efficient use of precious ⁴⁴Ti material in storage ring

Participating Groups

Friedrich-Schiller Universität Jena, Helmholtz Institute Jena O. Forstner, T. Stöhlker

HZDR

D. Bemmerer, T.E. Cowan, A.R. Junghans

TU Dresden

K. Zuber

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Paul Scherrer Institute Villigen/CH

R. Dressler, D. Schumann

SPARC Collaboration

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

