NUCLEAR REACTION STUDIES USING THE CRYRING REACTION CHAMBER SYSTEM

Carlo G. Bruno

University of Edinburgh

on behalf of the NucAR collaboration

NARRS workshop, 14 March 2018 GSI, Darmstadt

CRYRING PART OF FAIR PHASE 0

- Energy range: ~hundreds of keV/u to ~10 MeV/u
- Circumference: 54 m (half of ESR)
- Vacuum: 10⁻¹¹ 10⁻¹² mbar

THE CRYRING REACTION CHAMBER SYSTEM

- Two chambers mounted downstream, upstream, or both
- Allows combined nuclear and atomic physics measurements
- Fully funded by UK STFC. TDR submitted to GSI.
- To be mounted on the CRYRING by Summer 2019

UPSTREAM CONFIGURATION

THE MOVING DSSDs

EXPERIMENTAL SETUP

In-ring target

- A cryogenic jet micro-droplet target is being developed by GSI (N. Petridis *et al.*)
- Design goal: at least 10¹⁴ atoms/cm²
- No gas recirculation system (at present)

Detectors & DAQ

- Highly segmented Double-sided Silicon Strip Detectors
- 128x128 = 256 channels per det. x 8 dets. = **2048 channels**!
- We will use AIDA FEE64 ASIC cards to read data out
- AIDA is in use at BRIKEN@RIKEN, and will be at DESPEC@GSI
- FEE64 cards have already been produced and tested

SCIENTIFIC AIMS

This system will be used for **high resolution** charge particle reaction studies for nuclear astrophysics including:

- 1. Direct astrophysical reaction measurements e.g. (p,α)
- 2. Indirect reactions probing key resonance properties e.g. (d,p)

First measurement approved: ³⁰P(d,p) (S461_Bruno) → Relevant for modelling nucleosynthesis in novae explosions

NOVAE NUCLEOSYNTHESIS

 $^{30}P(p,\gamma)^{31}S$ is a bottleneck which controls abundance of elements from Si \rightarrow Ca isotopes emitted in novae ejecta.

PRE-SOLAR GRAINS

- Meteoritic grains predating the birth of Solar System
- Models predict large ³⁰Si/²⁸Si ratio for grains originating from novae
- Abundance of ³⁰Si is determined by the competition between the ³⁰P β^+ decay and the ³⁰P(p, γ)³¹S reaction rate.

Andrew M Davis. University of Chicago

SCIENTIFIC AIMS

- ³⁰P(p,γ) plays a key role in novae nucleosynthesis (currently single most important uncertainty)
- Direct measurement of ${}^{30}P(p,\gamma)$ impossible ${}^{30}P$ beams too weak
- Use ³⁰P(d,p)³¹P transfer reaction to probe unknown strength of key *I*=0 and *I*=1 capture resonances for ³⁰P(p,γ) reaction rate in novae.

SCIENTIFIC AIMS

From a **single** measurement at a single energy one obtains:

- The energy of all states
- The angular distribution of all states
- Fitting the angular distributions, the J^π of the states
- Comparing with models (e.g. DWBA), the spectroscopic factor C²S of all states

- Primary beam: ⁴⁰Ar (480 MeV/u) -> to FRS
- Secondary beam from FRS: ³⁰P -> to ESR
- Cool down & stack beam in ESR -> to CRYRING
- Measure in CRYRING & stack beam in ESR
- Expected luminosity: ~100 (barn*s)⁻¹
- Shifts approved: 21 (A- priority)

—ESR

—ESR

-ESR -CRYRING

—ESR —CRYRING

—ESR —CRYRING

COMMISSIONING & PARASITIC STUDIES

Parasitic runs for commissioning are desirable

- Any beam heavier than deuterium OK
- Primary beams (bypassing FRS) OK

Call for proposals at the CRYRING local RFQ injector

- We submitted a Letter of Intent to have light ions (e.g. ¹²C)
- We could use e.g. ¹²C(d,p) to commission the setup (target, vacuum, DAQ, resolution, efficiency, etc.)

In principle high-resolution (d,p) **parasitic studies** can be performed with any beam heavier than deuterium transported to the CRYRING

CONCLUSIONS

- New setup for nuclear & atomic physics experiments
- To be mounted on CRYRING by Summer 2019
- Commission with local injector and/or parasitic runs
- First approved experiment ³⁰P(d,p)
- Other possible uses: Surrogate fission reactions measurements (see Beatriz Jurado's talk)