<u>Measurement of 1323 and 1487 keV</u> <u>resonances in</u> ¹⁵N(α,γ)¹⁹F with the recoil separator ERNA

<u>Gianluca Imbriani</u>

Physics Department of University of Naples Federico II, Italian National Institute of Nuclear Physics (INFN) and Joint Institute of Nuclear Astrophysics (JINA)

gianluca.imbriani@na.infn.it

Origin of Fluorine: State of the art

¹⁹F production site is a longstanding problem, three are the possible astrophysical sites:

- 1. Via spallation of ^{20}Ne by ν_{μ} and ν_{τ} neutrinos during the explosion of a type II Supernovae;
- In massive stars experiencing large mass loss episodes, where the material exposed to the He burning could be ejected before the fluorine destruction occurring via the ¹⁹F(α,p)²²Ne reaction (Wolf Rayet stars);
- During the Asymptotic Giant Branch (AGB), where the ¹⁹F production takes place, mainly via the ¹⁵N(α,γ)¹⁹F reaction, in the convective zones generated by recursive He-burning thermonuclear runaways. Most promising

Observation of the ¹⁹F

• Direct information of ¹⁹F production only in AGB stars .

¹⁹F production during the AGB phase 1st

To produce ¹⁹**F** it is necessary to accumulate ¹⁵**N** in the **He**–intershell, where the reaction ${}^{15}N(\alpha,\gamma){}^{19}F$ takes place.

This can happen during the AGB phase, when alternatively H and He-shells switch on and off several times. Then, the convective Henvelope can penetrate the He-intershell, dredging-up the fluorine.

Nuclear network:

- 1. Accumulation of ¹⁵N:
- A. ${}^{13}C(\alpha,n){}^{16}O \rightarrow {}^{14}N(n,p){}^{14}C$
- B. ¹⁴C(α,γ)¹⁸O, ¹⁴N(α,γ)¹⁸F(β⁺)¹⁸O
- C. ¹⁸O(p, α)¹⁵N, the presence of p could destroy ⁵N via ¹⁵N(p, α)¹²C.

2. When temperature increases: A. ${}^{15}N(\alpha,\gamma){}^{19}F$

To start the nuclear network, which will end with the ¹⁹F, it is thus required the concomitant presence of neutrons and protons.

¹⁹F production during the AGB phase 2nd

Summing up, the final ¹⁹F abundance strongly depends on the reactions governing the ¹⁵N and the ¹⁸O nucleosynthesis.

The complete list of reactions that is worth to explore is:

¹³C(α,n)¹⁶O, ¹⁴C(α,γ)¹⁸O, ¹⁴N(α,γ)¹⁸F, ¹⁵N(α,γ)¹⁹F, ¹⁸O(α,γ)²²Ne, ¹⁸F(α,p)²¹Ne and ¹⁹F(α,p)²²Ne.

¹⁵N(p,γ)¹⁶O, ¹⁷O(p,γ)¹⁸F(β⁺)¹⁸O, ¹⁸O(p,γ)¹⁹F, ¹⁵N(p,α)¹²C, ¹⁸O(p,α)¹⁵N, V e e He burning shell H burning shell H envelope

The temperature in the H shell of AGB star is between 20.10⁶ K and 80.10⁶ K, while in the He shell ranges between 100.10⁶ K and 400.10⁶ K.

Stellar models with FUNS*

Updating the nuclear network rates

S. Cristallo et al.: ¹⁹F nucleosynthesis at low metallicities (*RN*) A&A 570, A46 (2014)

Reaction rate	Old source	New source
1 Proton captures		
$^{14}N(p,\gamma)^{15}O$	Formicola et al. (2004)	Adelberger et al. (2011)
¹⁵ N(p,γ) ¹⁶ O	Angulo et al. (1999)	Leblanc et al. (2010)
$^{17}O(p,\gamma)^{18}F$	Angulo et al. (1999)	Scott et al. (2012)
¹⁸ O(p, y) ¹⁹ F	Angulo et al. (1999)	Iliadis et al. (2010)
$^{15}N(p,\alpha)^{12}C$	Angulo et al. (1999)	Angulo et al. (1999)
$^{17}O(p,\alpha)^{14}N$	Angulo et al. (1999)	Iliadis et al. (2010)
$^{18}O(p,\alpha)^{15}N$	Angulo et al. (1999)	Iliadis et al. (2010)
¹⁹ F(p,α) ¹⁶ O	Angulo et al. (1999)	La Cognata et al. (2011)
α captures		
$^{14}C(\alpha,\gamma)^{18}O$	Caughlan & Fowler (1988)	Lugaro et al. (2004)
$^{14}N(\alpha,\gamma)^{18}F$	Görres et al. (2000)	Iliadis et al. (2010)
$^{15}N(\alpha,\gamma)^{19}F$	Angulo et al. (1999)	Iliadis et al. (2010)
$^{18}O(\alpha,\gamma)^{22}Ne$	Giesen et al. (1994)	Iliadis et al. (2010)
${}^{19}F(\alpha,p)^{22}Ne$	Ugalde (2005)	Ugalde et al. (2008)
$^{13}C(\alpha,n)^{16}O$	Drotleff et al. (1993)	Heil et al. (2008)

* Cristallo, S., Straniero, O., Gallino, R., et al. 2009, ApJ, 696, 797 Straniero, O., Gallino, R., & Cristallo, S. 2006, Nucl. Phys. A, 777, 311

Sensitivity study

Table 2. 2σ percentage cross section upper and lower uncertainties at $T = 1 \times 10^8$ K and $T = 2.5 \times 10^8$ K and corresponding percentage fluorine surface variations.

	2σ (T	s ₈ = 1)	$2\sigma (T_8$	= 2.5)	Δ [F/Fe] (% var.)	$\Delta [F/\langle s \rangle]$] (% var.)
Reaction rate	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
$^{14}N(p,\gamma)^{15}O$	10	10	8	8	-3	+5	-3	+3
$^{15}N(p,\gamma)^{16}O$	15	15	15	15	-1	-2	-3	-2
$^{17}O(p,\gamma)^{18}F$	15	15	20	20	0	-2	-3	0
$^{18}O(p,\gamma)^{19}F$	30	30	30	30	-2	-3	-1	-3
$^{15}N(p,\alpha)^{12}C$	20	20	15	15	-3	+1	-3	-3
$^{17}O(p,\alpha)^{14}C$	15	15	6	6	-2	-2	-1	0
$^{18}O(p,\alpha)^{15}N$	8	8	8	8	+1	-2	+3	-1
${}^{19}F(p,\alpha){}^{16}O$	35	35	35	35	0	-1	-4	-4
$^{14}C(\alpha,\gamma)^{18}O$	100	84	100	62	-2	0	-3	-2
$^{14}N(\alpha,\gamma)^{18}F$	20	20	10	10	-1	-1	+3	-1
$^{15}N(\alpha,\gamma)^{19}F$	100	50	15	15	-3	-2	0	+5
$^{18}O(\alpha,\gamma)^{22}Ne$	70	50	70	50	-3	+1	-4	-5
${}^{19}F(\alpha,p){}^{22}Ne$	100	100	50	50	-5	+2	-2	+4
$^{13}C(\alpha,n)^{16}O$	25	25	25	25	-3	+7	-1	+3

S. Cristallo et al.: ¹⁹F nucleosynthesis at low metallicities (RN) A&A 570, A46 (2014)

Only ¹⁴N(p, γ)¹⁵O and ¹³C(α ,n)¹⁶O uncertainties influences the F production

Beyond the present uncertainties

Presence of not well know low or sub-threshold energy states in ${}^{13}C(\alpha,n){}^{16}O$, ${}^{14}C(\alpha,\gamma){}^{18}O$, ${}^{14}N(\alpha,\gamma){}^{18}F$, ${}^{15}N(\alpha,\gamma){}^{19}F$, ${}^{18}O(\alpha,\gamma){}^{22}Ne$ and ${}^{19}F(\alpha,p){}^{22}Ne$ may justify a larger variation of the rate

Table 3. Scaling factors sf of the computed tests with the corresponding ¹⁹F and F/(s) surface ratios with respect to the reference case.

Reaction rate	sf	<i>R</i> (¹⁹ F)	$R(F/\langle s \rangle)$
$^{13}C(\alpha,n)^{16}O$	0.01	4.70	2.80
$^{13}C(\alpha,n)^{16}O$	100	0.62	0.67
$^{14}C(\alpha,\gamma)^{18}O$	0.01	1.03	1.59
$^{14}C(\alpha,\gamma)^{18}O$	100	1.04	1.61
$^{14}N(\alpha,\gamma)^{18}F$	0.01	3.03	5.14
$^{14}N(\alpha,\gamma)^{18}F$	100	0.64	1.10
$^{15}N(\alpha,\gamma)^{19}F$	0.01	0.11	0.12
$^{15}N(\alpha,\gamma)^{19}F$	100	0.96	1.50
$^{18}O(\alpha,\gamma)^{22}Ne$	0.01	2.21	2.01
$^{18}O(\alpha,\gamma)^{22}Ne$	100	0.52	0.52
${}^{19}F(\alpha, p){}^{22}Ne$	0.01	1.05	1.19
$^{19}F(\alpha,p)^{22}Ne$	100	0.08	0.14

S. Cristallo et al.: ¹⁹F nucleosynthesis at low metallicities (RN) A&A 570, A46 (2014)

Beyond the present uncertainties

Presence of not well know low or sub-threshold energy states in ${}^{13}C(\alpha,n){}^{16}O$, ${}^{14}C(\alpha,\gamma){}^{18}O$, ${}^{14}N(\alpha,\gamma){}^{18}F$, ${}^{15}N(\alpha,\gamma){}^{19}F$, ${}^{18}O(\alpha,\gamma){}^{22}Ne$ and ${}^{19}F(\alpha,p){}^{22}Ne$ may justify a larger variation of the rate

Table 3. Scaling factors sf of the computed tests with the corresponding ¹⁹F and F/(s) surface ratios with respect to the reference case.

Reaction rate	sf	<i>R</i> (¹⁹ F)	$R(F/\langle s \rangle)$	_		
$^{13}C(\alpha,n)^{16}O$	0.01	4.70	2.80	-		
$^{13}C(\alpha,n)^{16}O$	100	0.62	0.67			
$^{14}C(\alpha,\gamma)^{18}O$	0.01	1.03	1.59	¹⁴ C(a.g) ¹⁸ O		
$^{14}C(\alpha,\gamma)^{18}O$	100	1.04	1.61	$18O(2 \sigma)^{22}Ne$		No variation
$^{14}N(\alpha,\gamma)^{18}F$	0.01	3.03	5.14			
$^{14}N(\alpha,\gamma)^{18}F$	100	0.64	1.10	14N(2 g)18E		Small
$^{15}N(\alpha,\gamma)^{19}F$	0.01	0.11	0.12	$13C(2 n)^{16}O$		variation
$^{15}N(\alpha,\gamma)^{19}F$	100	0.96	1.50			_
$^{18}O(\alpha,\gamma)^{22}Ne$	0.01	2.21	2.01	¹⁵ N(a,g) ¹⁹ F		Large
$^{18}O(\alpha,\gamma)^{22}Ne$	100	0.52	0.52	¹⁹ F(a,p) ²² Ne		variation
$^{19}F(\alpha,p)^{22}Ne$	0.01	1.05	1.19		_	
$^{19}F(\alpha,p)^{22}Ne$	100	0.08	0.14			

S. Cristallo et al.: ¹⁹F nucleosynthesis at low metallicities (RN) A&A 570, A46 (2014)

Beyond the present uncertainties

Presence of not well know low or sub-threshold energy states in ${}^{13}C(\alpha,n){}^{16}O$, ${}^{14}C(\alpha,\gamma){}^{18}O$, ${}^{14}N(\alpha,\gamma){}^{18}F$, ${}^{15}N(\alpha,\gamma){}^{19}F$, ${}^{18}O(\alpha,\gamma){}^{22}Ne$ and ${}^{19}F(\alpha,p){}^{22}Ne$ may justify a larger variation of the rate

Table 3. Scaling factors sf of the computed tests with the corresponding ¹⁹F and F/(s) surface ratios with respect to the reference case.

Reaction rate	sf	$R(^{19}F)$	$R(F/\langle s \rangle)$			
$^{13}C(\alpha,n)^{16}O$	0.01	4.70	2.80			
$^{13}C(\alpha,n)^{16}O$	100	0.62	0.67			
$^{14}C(\alpha,\gamma)^{18}O$	0.01	1.03	1.59	¹⁴ C(a.g) ¹⁸ O		NI
$^{14}C(\alpha,\gamma)^{18}O$	100	1.04	1.61	$^{18}O(a g)^{22}Ne$	-	No variation
$^{14}N(\alpha,\gamma)^{18}F$	0.01	3.03	5.14			
$^{14}N(\alpha,\gamma)^{18}F$	100	0.64	1 10	$14N(2 \sigma)^{18}F$		Small
$^{15}N(\alpha,\gamma)^{19}F$	0.01	0.11	0.12	$13C(2 n)^{16}O$		variation
$^{15}N(\alpha,\gamma)^{19}F$	100	0.96	1.50			<u>.</u>
$^{18}O(\alpha,\gamma)^{22}Ne$	0.01	2.21	2.01	¹⁵ N(a,g) ¹⁹ F		Large
$^{18}O(\alpha,\gamma)^{22}Ne$	100	0.52	0.52	¹⁹ F(a,p) ²² Ne		variation
${}^{19}\text{E}(\alpha, \mathbf{p}){}^{22}\text{Ne}$	0.01	1.05	1.19		-	
$^{19}F(\alpha,p)^{22}Ne$	100	0.08	0.14			
	Reaction rate ${}^{13}C(\alpha,n){}^{16}O$ ${}^{13}C(\alpha,n){}^{16}O$ ${}^{14}C(\alpha,\gamma){}^{18}O$ ${}^{14}C(\alpha,\gamma){}^{18}O$ ${}^{14}N(\alpha,\gamma){}^{18}F$ ${}^{14}N(\alpha,\gamma){}^{18}F$ ${}^{15}N(\alpha,\gamma){}^{19}F$ ${}^{15}N(\alpha,\gamma){}^{19}F$ ${}^{18}O(\alpha,\gamma){}^{22}Ne$ ${}^{19}E(\alpha,p){}^{22}Ne$ ${}^{19}E(\alpha,p){}^{22}Ne$	Reaction rate sf $^{13}C(\alpha,n)^{16}O$ 0.01 $^{13}C(\alpha,n)^{16}O$ 100 $^{14}C(\alpha,\gamma)^{18}O$ 0.01 $^{14}C(\alpha,\gamma)^{18}O$ 100 $^{14}N(\alpha,\gamma)^{18}F$ 0.01 $^{14}N(\alpha,\gamma)^{18}F$ 0.01 $^{14}N(\alpha,\gamma)^{18}F$ 100 $^{15}N(\alpha,\gamma)^{19}F$ 0.01 $^{15}N(\alpha,\gamma)^{19}F$ 100 $^{16}O(\alpha,\gamma)^{22}Ne$ 0.01 $^{18}O(\alpha,\gamma)^{22}Ne$ 100 $^{19}E(\alpha,p)^{22}Ne$ 0.01 $^{19}F(\alpha,p)^{22}Ne$ 100	Reaction rate sf $R(^{19}F)$ $^{13}C(\alpha,n)^{16}O$ 0.014.70 $^{13}C(\alpha,n)^{16}O$ 1000.62 $^{14}C(\alpha,\gamma)^{18}O$ 0.011.03 $^{14}C(\alpha,\gamma)^{18}O$ 1001.04 $^{14}N(\alpha,\gamma)^{18}F$ 0.013.03 $^{14}N(\alpha,\gamma)^{18}F$ 0.010.64 $^{15}N(\alpha,\gamma)^{19}F$ 0.010.11 $^{15}N(\alpha,\gamma)^{19}F$ 1000.96 $^{18}O(\alpha,\gamma)^{22}Ne$ 0.012.21 $^{18}O(\alpha,\gamma)^{22}Ne$ 1000.52 $^{19}F(\alpha,p)^{22}Ne$ 0.011.05 $^{19}F(\alpha,p)^{22}Ne$ 1000.08	Reaction rate sf $R(1^9F)$ $R(F/\langle s \rangle)$ $^{13}C(\alpha,n)^{16}O$ 0.014.702.80 $^{13}C(\alpha,n)^{16}O$ 1000.620.67 $^{14}C(\alpha,\gamma)^{18}O$ 0.011.031.59 $^{14}C(\alpha,\gamma)^{18}O$ 1001.041.61 $^{14}N(\alpha,\gamma)^{18}F$ 0.013.035.14 $^{14}N(\alpha,\gamma)^{18}F$ 1000.641.10 $^{15}N(\alpha,\gamma)^{19}F$ 0.010.110.12 $^{15}N(\alpha,\gamma)^{19}F$ 1000.961.50 $^{18}O(\alpha,\gamma)^{22}Ne$ 0.012.212.01 $^{18}O(\alpha,\gamma)^{22}Ne$ 1000.520.52 $^{19}F(\alpha,p)^{22}Ne$ 1000.080.14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reaction rate sf $R(1^{9}F)$ $R(F/\langle s \rangle)$ $^{13}C(\alpha,n)^{16}O$ 0.014.702.80 $^{13}C(\alpha,n)^{16}O$ 1000.620.67 $^{14}C(\alpha,\gamma)^{18}O$ 0.011.031.59 $^{14}C(\alpha,\gamma)^{18}O$ 1001.041.61 $^{14}N(\alpha,\gamma)^{18}F$ 0.013.035.14 $^{14}N(\alpha,\gamma)^{18}F$ 0.013.035.14 $^{14}N(\alpha,\gamma)^{18}F$ 1000.641.10 $^{15}N(\alpha,\gamma)^{19}F$ 0.010.110.12 $^{15}N(\alpha,\gamma)^{19}F$ 0.010.961.50 $^{18}O(\alpha,\gamma)^{22}Ne$ 0.012.212.01 $^{18}O(\alpha,\gamma)^{22}Ne$ 1000.520.52 $^{19}F(\alpha,p)^{22}Ne$ 0.011.051.19 $^{19}F(\alpha,p)^{22}Ne$ 1000.080.14

S. Cristallo et al.: ¹⁹F nucleosynthesis at low metallicities (RN) A&A 570, A46 (2014)

$^{15}N(\alpha,\gamma)^{19}F$

¹⁵N(α , γ)¹⁹F Q-value 4014 keV

FIG. 11. Fractional contribution of resonances and DC component to the total reaction rate of the ${}^{15}N(\alpha,\gamma){}^{19}F$, as a function of the temperature. The resonances are identified with their center-of-mass energy in keV.

E _{cm} [keV]	363.9	536.1	542.3	668	1091.2	1323	1487
ωγ [keV]	6.0 10 ⁻¹² u.l	(9.5 ± 1.2) 10 ⁻⁸	(6.4 ± 2.5) 10 ⁻⁹	(5.6 ± 0.6) 10 ⁻⁶	(9.7 ± 1.6) 10 ⁻⁶	(1.69 ± 0.14) 10 ⁻³	(3.56 ± 0.28) 10 ⁻³
Recoils/day/ µA	1	8.5 10 ³	5.5 10 ²	3.8 10 ⁵	3.9 10 ⁵	6 10 ⁸	1 10 ⁹

The measurement at ERNA

The measurement at ERNA

- Y_i reaction yields
- N_p is the number of ¹⁵N impinging on the target, we monitored this flux using Si Detector at about 25° placed in the second downstream pumping stage;
- Φ_q is the probability of recoils in the q+ charge state entering the separator;
- T_{RMS} is the separator transmission of recoils in charge state q+ to the end detector;
- η is is the detection efficiency;
- T_t is the target thickness.

The se a bean is guid magne used to After the fo quadru singlet a Wien counti are ins Si dete respec diamet of the of 15N to det target, of the of the yield a measu

The N beam

Nitrogen ion beam generation with a source of negative ions by cesium sputtering (**SNICS**) suffers difficulties connected with its low electron negativity, which hampers the formation of a stable negative ion.

material	Mass	$I_{\rm FC02}$	$I_{\rm FC04}$
	injected	$[\mu A]$	[pµA]
BN + C + Ag	26	7.7	2.1 ± 0.5
BN + C + Ag	25	2.5	0.7
$\rm Fe_3K(CN)_6$	26	14.0	4.0 ± 0.5
KSCN	26	11.0	3.5 ± 0.6
$\rm KSC^{15}N$	27	10.0	3.2
Polypyrrole	26	6.0	1.3
$NaN_3 + C$	26	10.0	2.8
Eumelanin	26	7.0	1.7
Nitroaniline	26	0.3	
BN	25	2.7	0.8
$NaNO_3$	30	0.4	
$\rm NH_4NO_3$	30	0.03	

^{14,15}N beam from cyanide compounds

A. Di Leva ^{a,b}, A. Pezzella ^{c,b,*}, N. De Cesare ^{d,b}, A. D'Onofrio ^{e,b}, L. Gialanella ^{e,b}, M. Romano ^{a,b}, M. Romoli ^b, D. Schuermann ^{a,b}, F. Terrasi ^{e,b}, G. Imbriani ^{a,b,**}

Measured N beam current in FC4 as a function of the injected ion mass.

Helium Gas Target thickness

TABLE I. Measured values, results, and relevant quantities used in the target thickness determination.

Ion	E _{Lab} (MeV)	$\Delta B(^{4}\text{He})$ (mT)	ε (⁴ He) (keV cm ² /10 ¹⁸)	$\Delta E(^{4}\text{He})$ (keV)	Thickness (10 ¹⁸ /cm ²)
¹² C	3.5	6.13	64.3	43.3 ± 3.1	0.67 ± 0.11
^{14}N	3.0	7.72	79.0	46.7 ± 2.5	0.59 ± 0.09
¹⁵ N	6.3	3.39	85.0	43.3 ± 4.8	0.51 ± 0.10
¹⁶ O	4.5	5.05	89.8	52.6 ± 3.5	0.59 ± 0.08
¹⁹ F	4.8	5.09	103	50.2 ± 2.7	0.49 ± 0.06
¹⁹ F	3.5	5.85	94.7	49.5 ± 3.0	0.52 ± 0.07

Measurement of the energy loss of several ions, using CSSM as an analyzer. The uncertainties are due to the ΔB determination, and to uncertainty on the stopping power values. Operating the target at a He pressure of 4 mbar:

 $(0.54 \pm 0.03) \times 10^{18}$ atoms/cm².

Helium Gas Target characterization

The distribution of the He was determined measuring the yield of the broad resonance at $\Gamma_{cm} = 130$ keV in $^{7}\text{Li}(\alpha,\gamma\alpha')$ ^{7}Li at the energy of $\text{E}_{\text{lab}} = 3325$ keV.

To correct the observed yield for the absorption by chamber walls, the experimental setup was simulated with GEANT4.

The simulation was validated against a measurement of the realtive attenuation of a ⁷Be γ -ray source, that could be moved along the beam axis of the target chamber.

Charge State probability: P of post-stripper

FIG. 4. Charge state probability of ¹⁹F ions as a function of the Ar post-stripper inlet pressure P_{stripper} at 5.0 MeV beam energy. Lines connecting the points are to guide the eye only. The dotted line represents the unmeasured current at this energy, due to nonaccessible 1+, 2+ charge states and further charge exchanging in the CSSM chamber; see text for details.

Charge State probability of ¹⁹F vs E

Due to the limitations of CSSM field, not all the charge states could be measured at all energies. The unmeasured charge state probabilities, namely 1+ qand 2+, were estimated considering that, at a given energy, the probability as a function of the charge state can be assumed Gaussian.

Acceptance

FIG. 6. Ratio of the observed yield Y with respect to the central yield Y_0 of the $E_{c.m.} = 1323$ keV resonance as a function of the energy set for the separator.

Results: particle identification

Results: particle identification

Results: particle identification

Results: 1323 keV resonance

Results: 1487 keV resonance

LSF analysis

To exclude that our results of Γ_{α} were an artifact of a wrong target thickness determination, we choose uniformly distributed random values for T_t and Γ_{α} and the LSF was minimized with respect to the other parameters. For both resonances T_t leads to fit of data with LSF close to the absolute minimum excluding possible issues.

Conclusions

Outlooks

- jet gas target;
- TOF as a final detector;
- Measurement of 365 keV resonance of $^{15}N(\alpha,\gamma)^{19}F$

http://nic2018.lngs.infn.it Laboratori Nazionali del Gran Sasso

