THE UNIVERSITY of York

¹²C+¹²C Reaction at Low Energies Carine T.Nsangu

496.WE-Heraeus-Seminar, 06-10 February 2012

Astrophysical Motivation

Hydrostatic Burning

Every star goes through different stages according to its mass

>Extremely small stars: He white dwarf >Small and intermediate stars $(0.4M_{\odot}-4M_{\odot})$: AGB stars >Intermediate stars $(4M_{\odot}-8M_{\odot})$: TP-AGB stars $\scriptstyle >$ Stars with mass beyond $10 \rm M_{\odot}$ in a supernovae explosion and end up as a black hole or neutron star.

 In AGB and TP-AGB, improved knowledge on ¹²C+¹²C will help constrain the mass boundary during mass loss that affect AGB.

 $\hfill\square$ Crucial Mass approximate: 8-10M $_{\odot}$ and is dependent on the knowledge of the $^{12}C+^{12}C$ reaction

THE UNIVERSITY of York

Astrophysical motivation

Binary system

Supernovae type Ia and Superburst

 Type Ia supernovae are referred to as standard candles for stellar distance determination.

Knowledge of ¹²C+¹²C which triggers type Ia supernovae will help understand its mechanism and timescale. Superburst are similar to x-ray bursts but last two or three orders of magnitude longer.

• There is an open question on whether the ¹²C+¹²C plays a role in superburst or not.

THE UNIVERSITY of York Previous ¹²C+¹²C measurements

This figure by Aguilera et al. shows the S-factor for different ¹²C+¹²C experiments. Lines shows different theoretical predictions. Aguilera et al., Physical Review C 73(2006) 064601

The disagreement between measured data is clearly seen.
Predictive power of theoretical models remain poor when extrapolating at low energies.

The experiment

THE UNIVERSITY of York

The aim of this experiment was the determination of the total cross section. The experiment was based on charged particle detection: ${}^{12}C({}^{12}C,\alpha){}^{20}Ne$ and ${}^{12}C({}^{12}C,p){}^{23}Na$ at the centre of mass 3.4–4.02 MeV. ${}^{12}C{}^{3+}$ was used as beam with an intensity of 10 11 pps. Enriched carbon of 10 or 20 ugcm 2 was used as target.

LEDA and S2 configuration were used for the experiment

Preliminary result

The parameters needed to be extracted are those corresponding to the variables required to calculate the differential cross section

Currently working on extracting the yield:

THE UNIVERSITY of York

This figure shows the energy versus angle for the gold run without shield.

Kinematics coupled with time of flight back of the S2 detector for the ¹²C+¹²C is used for particle identification.

> This figure shows the energy of the front of the S2 detector versus the energy for back of the S2 detector for the ${}^{12}C+{}^{12}C$.

> Analysis is ongoing

FOR FURTHER DETAIL, VISIT MY POSTER

Thanks very much for listening

Collaborators

A. M. Laird ¹, M. Aliotta ², L. Buchmann ³, T. Davinson ², S. P. Fox ¹, B. R. Fulton ¹, R.Lewis ¹, A. Murphy ², C.Ruiz ³, G. Ruprecht ³, A. C. Shotter ³, C.Tunstall ¹, K. Vaughan ¹, P. Walden ³ [1]University of York, UK [2] University of Edinburgh, UK [3] TRIUMF, Canada

