

S.G. Altstadt for the R³B Collaboration

INTRODUCTION

EXPERIMENTAL SETUP

ANALYSIS

OUTLOOK

Sebastian Altstadt

S.G. Altstadt for the R³B Collaboration

INTRODUCTION

- Impact of light, neutron-rich nuclei on the astrophysical r process
- Indirect methods are needed to determine reaction rates
- ⁷Be(p,γ)⁸B was investigated directly at small scale accelerators and in inverse kinematics via CD

EXPERIMENTAL SETUP

ANALYSIS

OUTLOOK

07.02.2012

Sebastian Altstadt

S.G. Altstadt for the R³B Collaboration

INTRODUCTION

- Impact of light, neutron-rich nuclei on the astrophysical r process
- Indirect methods are needed to determine reaction rates
- ⁷Be(p,γ)⁸B was investigated directly at small scale accelerators and in inverse kinematics via CD

EXPERIMENTAL SETUP

- ${}^{13}B(n,\gamma)$ and ${}^{14}B(n,\gamma)$ in inverse kinemtics via CD
- A 500 AMeV primary beam (⁴⁰Ar) produces a cocktail beam (A/Z = 3)
- Performed at the LAND/R³B setup

ANALYSIS

OUTLOOK

S.G. Altstadt for the R³B Collaboration

INTRODUCTION

- Impact of light, neutron-rich nuclei on the astrophysical r process
- Indirect methods are needed to determine reaction rates
- ⁷Be(p,γ)⁸B was investigated directly at small scale accelerators and in inverse kinematics via CD

EXPERIMENTAL SETUP

- ${}^{13}B(n,\gamma)$ and ${}^{14}B(n,\gamma)$ in inverse kinemtics via CD
- A 500 AMeV primary beam (⁴⁰Ar) produces a cocktail beam (A/Z = 3)
- Performed at the LAND/R³B setup

ANALYSIS

- Analysis principles
- Current status of analysis
- First preliminary results

OUTLOOK

07.02.2012

Sebastian Altstadt

S.G. Altstadt for the R³B Collaboration

INTRODUCTION

- Impact of light, neutron-rich nuclei on the astrophysical r process
- Indirect methods are needed to determine reaction rates
- ⁷Be(p,γ)⁸B was investigated directly at small scale accelerators and in inverse kinematics via CD

EXPERIMENTAL SETUP

- ${}^{13}B(n,\gamma)$ and ${}^{14}B(n,\gamma)$ in inverse kinematics via CD
- A 500 AMeV primary beam (⁴⁰Ar) produces a cocktail beam (A/Z = 3)
- Performed at the LAND/R³B setup

ANALYSIS

- Analysis principles
- Current status of analysis
- First preliminary results

OUTLOOK

- Further steps of analysis
- Future plans

Sebastian Altstadt