

Measurement of Low Energy Neutrons with Scintillation Detectors

Moritz Pohl¹,

J. Glorius¹, S. Kräckmann¹, C. Langer¹,

A. Krasznahorkay², R. Reifarth¹ and K. Sonnabend¹

¹Goethe-Universität Frankfurt, Max-von-Laue Straße 1, 60438 Frankfurt, Germany

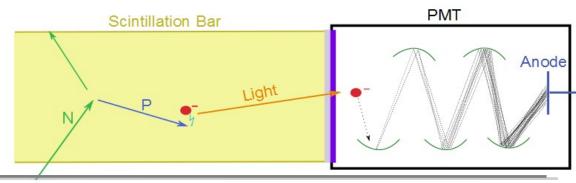
²Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, P.O. Box 51, Hungary

Measurement of Low Energy Neutrons with Scintillation Detectors

Low energy neutrons are often produced in astrophysical reactions, like:

- (p,n) reactions; (α ,n) reactions; fission experiments;
- (γ,n) experiments....

What to study:


- collective phenomena;
 neutron source-processes in stars;
- inverse kinematics;neutron-skin thickness.... its up to you!

Plastic Scintillation Detectors - Working Principle

- Neutron → hadronic scattering → proton-interaction induces light
- → electron cascade → current
- Fast rise and decay times
- Typically a time resolution below 1 ns
- Efficiency depending on material and geometrics

Sketch of a Neutron hitting a plastic scintillator (not to scale)

On The Poster...

...you will find:

On The Poster...

...you will find:

 Advantages and opportunities of scintillation detectors for the measurement of low energy neutron, especially on small scale accelarators

On The Poster...

...you will find:

- Advantages and opportunities of scintillation detectors for the measurement of low energy neutron, especially on small scale accelarators
- Experiences with the Low Energy Neutron detector Array (LENA) during testing and experiments at GSI