WE Heraeus-Seminar on Astrophysics with small-scale accelerators 6-10 February 2012 - Physikzentrum Bad Honnef - Germany

Lifetime measurement of the 6.792 MeV state in ¹⁵O with the AGATA Demonstrator

R. Depalo^{1,2}, C. Michelagnoli^{1,2}, R. Menegazzo¹, C. A. Ur¹, D. Bazzacco¹, D. Bemmerer³, C. Broggini¹, A. Caciolli¹, M. Erhard⁴, E. Farnea¹, Zs. Fülöp⁵, N. Keeley⁶, S. Lunardi^{1,2}, M. Marta³, T. Szücs⁵, and the AGATA collaboration

¹ INFN, Sezione di Padova, Padova, Italy. ² Dipartimento di Fisica dell'Universit` di Padova.

³ Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

⁴ Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

⁵ ATOMKI, The Debrecen, Hungary. ⁶ Andrzej Soltan Institute for Nuclear Studies, Warsaw, Poland

Outline

The Experiment

The Doppler Shift Attenuation Method The AGATA Demonstrator array Experimental setup

Data Analysis

Data sorting

Simulations of gamma ray emission and detection

Reaction mechanism

Lifetime evaluation: simulations VS experiment

The solar composition problem

Recent re-evaluation of the photospheric abundances with **3D** models of the solar atmosphere

(Asplund, Grevesse, Sauval 2005):

~30% decrease in metallicity ($Z_{1D} = 0.0170 \rightarrow Z_{3D} = 0.0122$) N. Grevesse et al. Space Sci. Rev. (2007) 130

Solar Standard Model predictions on solar structure are in disagreement with helioseismic inferences!

CNO neutrinos

¹⁴N(p,γ)¹⁵O cross section

Direct cross section measurements

exist down to 70 keV

Extrapolation in the Gamow window (~30 keV) is needed!

(D. Bemmerer NPA 779(2006) 297-317)

The uncertainty on extrapolation is dominated by the width $(\Gamma = \hbar/\tau)$ of the resonance corresponding to the 6.79 MeV level E. G. Adelberger et al. Rev. Mod. Phys. 83, 195-245 (2011)

The lifetime of the 6.79 MeV level

Group	Method	τ _γ ^{6.792} [fs]
Oxford 1968 W.Gill et al., Nucl. Phys. A 121. 209	DSAM d(¹⁴ N, ¹⁵ O)n	< 28
TUNL 2001 P.F. Bertone et al., Phys. Rev. Lett. 87, 152501	DSAM ¹⁴ N(p,γ) ¹⁵ O	1.6±0.7 (44%)
RIKEN 2004 K. Yamada et al., Phys. Lett. B 579, 265	CE ²⁰⁸ Pb(¹⁵ O, ¹⁵ O*)	0.69±0.43 (62%)
LUNA 2004 A. Formicola et al., Phys. Lett. B 591, 61	Cross section + R-matrix fit	1.1±0.5 (45%)
TUNL 2005 R. Runkle et al., Phys. Rev. Let. 94, 082503	Cross section + R-matrix fit	0.3±0.1 (33%)
Bochum 2008 D. Schürmann et al., Phys. Rev. C 77, 055803	DSAM ¹⁴ N(p,γ) ¹⁵ O	< 0.77
LUNA 2008 M. Marta et al., Phys. Rev. C 78, 022802(R)	Cross section + R-matrix fit	0.75±0.20 (27%)

Still high uncertainity!

New (direct) Doppler Shift Attenuation lifetime measurement exploiting the AGATA Demonstrator HPGe array capabilities

Outline

The Experiment

The Doppler Shift Attenuation Method The AGATA Demonstrator array Experimental setup

Data Analysis

Data sorting

Simulations of gamma ray emission and detection

Reaction mechanism

Lifetime evaluation: simulations VS experiment

Level lifetime compared with the characteristic slowing down time in a material $(10^{-15} < \tau < 10^{-11} s)$

Level lifetime compared with the characteristic slowing down time in a material $(10^{-15} < \tau < 10^{-11} s)$

Level lifetime compared with the characteristic slowing down time in a material $(10^{-15} < \tau < 10^{-11} s)$

Level lifetime compared with the characteristic slowing down time in a material $(10^{-15} < \tau < 10^{-11} s)$

$$E\left(\vartheta\right) = E_{\theta} \frac{\sqrt{1-\beta^2}}{1-\beta\cos\vartheta}$$

The decay occurs at different velocities depending on the distance covered inside the target (and hence on the lifetime)

The Advanced GAmma-ray Tracking Array

New generation array of position-sensitive HPGe detectors

Demonstration phase @ LNL \rightarrow 5 triple clusters (4 available for the experiment)

A. Gadea et al. NIM 654 (2011) 88-96

Efficiency and FWHM @ 7 MeV : ~ 0.4% , 5 keV

36-fold electrically segmented HPGe crystals

Digital signal processing and application of Pulse Shape Analysis and $\gamma\text{-}ray$ Tracking techniques

γ-ray tracking concept

Experimental setup

Reaction ²H + ¹⁴N @ 32 MeV

Tandem XTU terminal voltage 8.95 MV $I(^{14}N^{3+}) \sim 4 - 5 \text{ pnA}$

Main products \rightarrow ¹⁵N ; ¹⁵O

- ²H implanted in a 400nm surface layer of a 4mg/cm² Au target
- AGATA Demonstrator (4ATC's) at backward angles

 β (¹⁵O) ~ 6.5 % \longrightarrow E'_{γ} ~ 6400 keV

AmBe(Fe) source during experiment to monitor gain stability

(~60 cm below the reaction chamber)

Outline

The Experiment

The Doppler Shift Attenuation Method The AGATA Demonstrator array Experimental setup

Data sorting

Simulations of gamma ray emission and detection

Reaction mechanism

Lifetime evaluation: simulations VS experiment

Data analysis: events sorting

The angular range can be divided into 2° slices according to the angle of the first interaction point of each event

Data analysis: events sorting

The angular range can be divided into 2° slices according to the angle of the first interaction point of each event

Data analysis: simulations

Lineshape analysis performed comparing experimental spectra with GEANT4 Simulations of the reaction and γ - ray emission and detection E. Farnea et al. INFN-LNL Report 230 (2010) 57

INPUT:

- Projectile energy
- Target material and implantation profile (ERD and BS Analysis R.Depalo et al., INFN-LNL Rep. 234 (2011) 83)
- Reaction mechanism and angular distribution of emitting nuclei
- Excited levels energies, lifetimes and branching ratios
- Setup geometry (E. Farnea et al., NIM A 621 (2010) 331)

OUTPUT :

Interaction points of emitted gammas to be tracked with the same algorithm used for experimental data

Data analysis: simulations

Lineshape analysis performed comparing experimental spectra with GEANT4 Simulations of the reaction and γ - ray emission and detection E. Farnea et al. INFN-LNL Report 230 (2010) 57

INPUT:

- Projectile energy
- Target material and implantation profile (ERD and BS Analysis R.Depalo et al., INFN-LNL Rep. 234 (2011) 83)
- Reaction mechanism and angular distribution of emitting nuclei
- Excited levels energies, lifetimes and branching ratios
- Setup geometry (E. Farnea et al., NIM A 621 (2010) 331)

OUTPUT :

Interaction points of emitted gammas to be tracked with the same algorithm used for experimental data

Reaction mechanism and kinematics

Data analysis: the 8.31 MeV level in ¹⁵N

angle=158 deg, red_chi=0.031 (128 points)

Data analysis: the 6.79 MeV level in ¹⁵O

Data analysis: the 6.79 MeV level in ¹⁵O

Summary

- ••
- The application of Advanced Gamma-ray Tracking technique allows DSAM studies over a "continuum" distribution of angles
- Line shape analysis on ¹⁵N 8.31 MeV level in agreement with literature
- ••
- A qualitative estimation of the 6.79 MeV level in 15 O suggests a ~ 1fs lifetime (or shorter...)

Insights in the reaction mechanism are needed to fully trust the results of Montecarlo simulations

The solar composition problem

New 3D solar atmosphere models:

- \rightarrow essentially parameters free
- \rightarrow better fit of absorbition lines

 \rightarrow granulation

30% decrease in metallicity:

> Smaller temperature gradient \Rightarrow R_{cz}/R_{*} from 0.713 to 0.728

Age of globular clusters increased by 5 - 10%

40% decrease in CNO v flux

Interaction is closer to segment 3 (larger amplitude than segment 5)

γ-ray tracking concept

²⁴¹AmBe + Fe gamma spectrum

Target Analysis

target = deuterium implanted in a Au backing (~3.8 mg/cm²)

following consecutive deuterium implantations at energies between 30 and 100 keV:

~1x10⁺¹⁸ atoms/cm² (Au: ²H ~2.6:1)

R.Depalo et al., INFN-LNL Rep. 234 (2011) 83