

High Power Targets for FRANZ

Micaela Fonseca

496. WE-Heraeus-Seminar: Astrophysics with modern small-scale accelerators

Outline

- Motivation
- Challenges of high power target design
- Thermal Evaporation for the thin films preparation
- Neutron high power target
- Experiment at GSI to measure the temperature
- Proton high power target

• Motivation

Motivation

Energy-dependent neutron capture cross section measurements

Cross sections of (p,γ) reactions for p Process.

Three essential ingredients have to be optimized:

- Beam intensity FRANZ Facility
- Detector efficiency
- Target quality

7th February, 2012

- Motivation
- Challenges of high power target design

The principal concept of the high-power target is as follows:

FRANZ Facility

FRANZ Facility

Continuous mode and for (p,γ) measurements:

continuous proton beam of up to 20 mA

Enormous heat load of up to 100 kW/cm² has to be handle

Target has to be able to absorb the beam power COMPLETELY!

Van der Graaff and Tandem accelerators Energy: 100 – 5000 keV

Proton beam currents:

- 1-100 nA : Ion Beam Techniques
- up to 2 μ A : cross section measurements

FRANZ Facility Factor of ~1000 higher!

Prototype: high current

2 mA, 4 kW proton beam

2 mA

Factor of ~1000 higher!

7th February, 2012

Ideal material for the backing:

High Stiffness and High Heat Conductivity

to withstand water pressure of the cooling system

to withstand the thermal stress induced by beam heating

No bending! — Geometry; vacuum...

Backing

- 🦫 Foil
 - Neutron high power target: Copper foil
 - Proton high power target:
 - Choice: Depending on the element in study

- Motivation
- Key challenges to high power target design
- Thermal Evaporation

7th February, 2012

Reservoir: Mo

7th February, 2012

Homogeneous evaporation

Evaporation of a thin layer : Ag or Au.

Protect the preceding thin film

Current status for thermal evaporation

- Thermal Evaporation setup just for evaporate Lithium Fluoride
- Leak tests

Reassembling

Contents

- Motivation
- Challenges of high power target design
- Thermal Evaporation
- Neutron high power target

Production of quasi-stellar neutron spectra for nuclear The principal concept of the high-power neutron astrophysics applications target is as follows:

7th February, 2012

The neutron production target has to meet the following requirements:

Surface temperatures have to be kept below 200 °C to protect the Li layers and to guarantee safe long term operation.

Surface temperatures have to be kept below 200 °C to protect the Li layers and to guarantee safe long term operation.

Phase diagram of water

7th February, 2012

Increase the water pressure of the cooling system.

7th February, 2012

The neutron production target has to meet the following requirements:

In forward direction massive parts should be avoided to minimize neutron absorption and scattering

Neutrons are emitted in a forward cone of 120° opening angle

Since the neutrons will cross the water layer, moderation by the cooling water might be an issue!

Best thickness for the water layer?

Simulations necessary?

- prototype: 0.1 mm thickness

symbol	description	$P = c_{ m H_2O} \cdot \dot{m} \cdot \Delta T$
$P = 4 \mathrm{kW}$	power	ir Am
$c_{\mathrm{H_2O}} = 4.18 \mathrm{kJ/(kg \cdot K)}$	heat capacity of water	$= c_{\mathrm{H}_{2}\mathrm{O}} \cdot \rho \cdot V \cdot \Delta T$
$ ho = 1000{ m kg}/{ m m}^3$	density of water	$= c_{\mathrm{TL}} \circ \cdot \circ \cdot v \cdot A \cdot \Delta T$
A	cross section area of water "pipe"	$= c_{\rm H_2O} \cdot \rho \cdot c \cdot H \cdot \Delta I$
υ	water velocity	
ΔT	temperature increase	A TT P
		$v \cdot \Delta T = \frac{1}{c_{\mathrm{H_2O}} \cdot \rho \cdot A}$
		$4 \mathrm{kJ/s}$
		$= \frac{1}{4.18 \mathrm{kJ/(kg \cdot K) \cdot 1000 kg/m^3 \cdot A}}$
Thin water layer of 0.1 mm		$= \frac{9.57 \cdot 10^{-4} \mathrm{K} \cdot \mathrm{m}^3 / \mathrm{s}}{10^{-4} \mathrm{K} \cdot \mathrm{m}^3 / \mathrm{s}}$
		- A

If we want a temperature increase no higher than 100 K, we need water flowing at 9.6 m/s.

7th February, 2012

D: Thermisch-stationäre Analyse Thermisch-stationär Zeit: 1, s 17.01.2012 14:57

Wärmestrom 2: 4000, W
 B Konvektion auf Deckel: 25, °C, 5,e-002 W/mm^{2+°C}
 Konvektion im Kühlkanal: 30, °C, 5,e-002 W/mm^{2+°C}
 Konvektion Target: 25, °C, 5,e-002 W/mm^{2+°C}
 Konvektion Außen: 25, °C, 5,e-004 W/mm^{2+°C}

7th February, 2012

7th February, 2012

Closed cooling system

Water must be cooled FAST

Efficiency of the pumping system!

Increase the water pressure

Number of protons?

7th February, 2012

Contents

- Motivation
- Challenges of high power target design
- Thermal Evaporation
- Neutron High Power Target
- Experiment at GSI

GSI, Helmholtzzentrum für Schwerionenforschung GmbH in collaboration with the Super-FRS group.

AIM: to simulate the power of the proton beam

The setup consists of the following equipment provided by Huttinger Elektronik and SensorTherm:

High power generator for induction heating, HF-Generator BIG 20SC. Range up to 22 kW

Pyrometer Series Metis MS09 SensorTherm: Range 350-1800 °C

and

K type thermocouple working up to 1260 °C

Rod to simulate the beam

No temperature increase!

Rod to simulate the beam

Stainless steel screw

Temperature up to 800 °C

Pyrometer Series Metis MS09 SensorTherm: Range 350-1800 °C

Simulations of the rod: Temperature at the end

7th February, 2012

7th February, 2012

Contents

- Motivation
- Challenges of high power target design
- Thermal Evaporation
- Neutron High Power Target
- Experiment at GSI
- Proton High Power Target

The principal concept of the high-power target is as follows:

- Backing with 10 mm in diameter and with 1 mm thickness; water-cooled;
- Thin film of the relevant element evaporated onto the backing;

Massive Parts > 1mm Thickness of the water layer > 0.1mm

7th February, 2012

The technical challenges for targets in high-power proton beams are:

- he same as for the neutron high power target
- The background from backing impurities should be as low as possible
- The target and the cooling configuration need to fit into 4π BaF₂ detector
- The targets should be easy to handle

Backing material?

Material	Thermal conductivity W/mK
Aluminium	237
Gold	318
Copper	401
Chemical Vapor Deposition (CVD) diamond	2000

Another Advantage of CVD

If it is necessary to perform measurements for:

Target thickness, Stoichiometry, Homogeneity, Check the stability under bombardment

For example: Ion beam Techniques: Rutherford Backscattering Spectroscopy (RBS)

RBS simulation: SIMNRA

Summary and Outlook

- Prototype in developing phase.
- Experiment at GSI will enable to validate the simulations.

Final prototype

Test with proton beam. Different range of currents

Experiments to measure the layer of LiF after the bombardment. Degradation may occur! Not stable! Ion beam Techniques: RBS, PIGE

Summary and Outlook

With the Knowledge of the Neutron High Power Target

It is possible to produce a Proton High Power Target

Future exciting experiments are needed to be performed in order to achieve a stable target

THANK YOU FOR YOUR ATTENTION !!!

Goethe Universität Frankfurt

• Experimental Astrophysics Group:

Reifarth, R.; Sonnabend, K.; Plag, R.; Meusel, O.; Schmidt, S.; Altstadt, S.; Brost, K.; Ershova, O.;

Beinrucker, C.; Glorius, J.; Göbel, K.; Heftrich, T.; Koloczek, A.; Kräckmann, S.; Langer, C.;

Landwehr, K.; Mikorski, M.; Pohl, M.; Rastrepina, A.; Ritter, C.; Schleyer, C. Slavkovská, Z.;

Thomas, T. Gilbert, M.; Volknandt, M.; Weigand, M.

• Thomas Metz: inventor drawings

GSI, Helmholtzzentrum für Schwerionenforschung GmbH

Dermati, K.; Wischert, I.; Heil. M;