Experiments to study optical-model potentials

Anne Sauerwein

Institut für Kernphysik, Universität zu Köln

496th Wilhelm und Else Heraeus-Seminar on

Astrophysics with modern small-scale accelerators

Physikzentrum Bad Honnef 06 – 10 February, 2012

Bonn-Cologne Graduate School of Physics and Astronomy

This project is supported by the DFG (ZI 510/5-1 and INST 216/544-1).

Member of the Bonn-Cologne Graduate School of Physics and Astronomy

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

- p nuclei
- off-beam experiment (activation)
 - ¹⁴¹Pr(α ,n)¹⁴⁴Pm at PTB Braunschweig
- in-beam measurements with HPGe detectors
 - $^{74}\text{Ge}(p,\gamma)^{75}\text{As at INP , Demokritos'' Athens}$
- summary

p nuclei:

- proton-rich isotopes of some elements between Se and Hg
- not produced in the s or r process
- between 30 and 35 nuclei
- isotopic abundances ~ 0.1 1%

nucleosynthesis of *p* nuclei:

- different p nuclei are produced by different processes in various astrophysical sites
- γ process (core-collapse supernovae (SN), Type Ia SN, subChandrasekhar SN)
- v process (core-collapse SN)
- rp process (accreting binary system with compact object)
- pn process (subChandrasekhar SN)
- vp process (core-collapse SN)

reaction network:

- large network of reactions: Photodisintegrations, proton capture reactions, β decays, ...
- ~ 20000 reactions
- ~ 2000 nuclei (mainly unstable)

Difficulties in the determination of reaction rates

- number of reactions too large to measure all of them
- many reactions on radioactive nuclei
 (currently) not measurable
- Gamow window located at low energies, often below Coulomb barrier
 small cross sections

theoretical calculations necessary

- to calculate reaction rates, if no experimental data is available
- to extrapolate the data towards smaller energies, if experimental data is available above the Gamow window

improvement of nuclear models to calculate reaction rates

- nuclear masses
- properties of excited states
- nuclear level densities
- γ-strength functions
- optical model potentials (OMP)

Experimental situation for proton- & α -induced reactions

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

α +¹⁴¹Pr optical model potential

- inside the star the reaction
 ¹⁴⁵Pm(γ,α)¹⁴¹Pr takes place
- but stellar effects for reverse reaction ${}^{141}Pr(\alpha,\gamma){}^{145}Pm$ are smaller

 within the Gamow window: only sensitive to α width

BUT:

¹⁴¹Pr (α , γ) reaction hampered by small cross section and weak γ intensity in ¹⁴⁵ Nd

improvement of α +¹⁴¹Pr OMP by ¹⁴¹Pr(α ,n) reaction

Calculated with SMARAGD Code version 0.8.3s (T. Rauscher) A. Sauerwein, IKP, Universität zu Köln, AG Zilges

A. Sauerwein *et al.*, Phys. Rev. C **84** (2011) 045808

except close to the (α,n) threshold the ¹⁴¹Pr (α,n) -rate is sensitive to the α -nucleus OMP

experimental data improve the α -nucleus OMP

improvement of predictions of stellar ¹⁴⁵Pm(γ,α)¹⁴¹Pr-rate

Calculated with SMARAGD Code version 0.8.3s (T. Rauscher)

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Activation experiments

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Activation experiments

Counting setup in Cologne:

- 2 HPGe Clover detectors (relative efficiency of 120% each)
- passive lead and copper shielding
- active BGO shield

G. Duchêne et al. NIM A 432 (1999) 90

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Activation experiments

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Experimental parameters and spectra

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Experimental parameters and spectra

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Experimental parameters and spectra

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Comparison of single spectra and coincidence spectra

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Comparison of single spectra and coincidence spectra

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Results ¹⁴¹Pr(α ,n)¹⁴⁴Pm

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

- abundance of ⁷⁴Se depends not only on the ⁷⁴Se(γ,p) rate
- can be produced by ⁷⁴Ge(p,γ)⁷⁵As(p,n)⁷⁵Se(γ,n)

direct impact of 74 Ge(p, γ) on final abundance of 74 Se

W. Rapp et al., APJ 653 (2006) 474

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Relevance of nuclear physics input to the cross section

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

In-beam experiments with HPGe detectors

detection of the prompt γ decays of the excited reaction products

Institute of Nuclear Physics NCSR "Demokritos" Athens

- 5.5 MV Van de Graaff Tandem accelerator
- 4 HPGe detectors (relative efficiency of ~100 % each) under fixed angles on a turnable table
- each energy measured under two angle sets

Experimental method

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Experimental method

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

transitions to the ground state

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

transitions to excited states

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

de-excitation of "entry state"

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Partial cross sections $^{92}Mo(p,\gamma)$

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Preliminary results

A. Sauerwein, IKP, Universität zu Köln, AG Zilges

Summary

 $\gamma\gamma$ -coincidence method with a clover-type HPGe detector

- used to determine absolute cross sections
- consistency checks with additional setups
- ¹⁴¹Pr(α,n)¹⁴⁴Pm has been measured at PTB Braunschweig
- ➡ a local potential was constructed

in-beam method with HPGe detectors

\rightarrow ⁷⁴Ge(p, γ)⁷⁵As has been measured at INP Athens